Автор: Пользователь скрыл имя, 20 Августа 2011 в 17:23, курсовая работа
Наиболее часто для формирования выборочной совокупности применяют бесповторную случайную выборку. Случайный отбор организуют с помощью жребия, таблицы случайных чисел или программы, генерирующей квазислучайную последовательность чисел. Для этого единицы генеральной совокупности нумеруют. Данные, соответствующие выпавшим, номерам попадают в выборку. При этом повторяющиеся номера пропускаем.
РАЗДЕЛ 1.Исследование модели распределения 2
1. Формирование выборочной совокупности 2
2. Построение интервального ряда распределения 3
3.Проверка соответствия эмпирического распределения нормальному закону распределения 4
РАЗДЕЛ 2.Исследование взаимосвязи двух количественных признаков 8
1. Оценка тесноты корреляционной связи 8
2. Определение формы связи двух признаков 9
РАЗДЕЛ 3. ИЗУЧЕНИЕ ДИНАМИЧЕСКИХ РЯДОВ 12
1.Изучение сезонных явлений 12
2.Определение основной тенденции развития 14
3. Изучение корреляционной зависимости между уровнями двух динамических рядов 15
3.1.Изучение корреляционной зависимости между уровнями двух динамических рядов методом коррелирования уровней 15
3.2.Изучение корреляционной зависимости между уровнями двух динамических рядов методом коррелирования разностей 16
3.3.Изучение корреляционной зависимости между уровнями двух динамических рядов методом коррелирования остатков (отклонений от трендов) 17
3.4. Изучение корреляционной зависимости между уровнями двух динамических рядов методом коррелирования с учётом фактора времени 19
Для
выявления основной тенденции развития
применяют аналитическое
Наиболее тщательно выбирают модель для целей экстраполяции значений показателя. Значение х и у выбираем из табл.6 приложения.
Коэффициенты уравнения определяем методом наименьших квадратов. В нашем случае система уравнений относительно коэффициентов a0 и a1 имеет вид:
и коэффициенты a0
и a1 равны:
Для признака x:
Для признака y:
Продолжаем рассмотрение двух выбранных нами рядов динамики. При исследовании тесноты связи между их уровнями на первое место выступает анализ смысла связи между рядами и установление факторного и результативного признаков. Без такого анализа значение коэффициента корреляции может выражать только случайное сопутствие в изменении уровней двух рядов.
Применение традиционных приемов изучения корреляции к динамическим рядам сопряжено со следующими особенностями:
1.
В социально-экономических
2.
Второй особенностью изучения корреляции
динамических рядов является наличие
временного лага, т.е. сдвига по времени
изменения уровней одного ряда по отношению
к изменению уровней другого ряда. Если
сдвинуть уровни одного ряда относительно
другого и убрать временной лаг, то получим
верную оценку тесноты корреляционной
связи уровней двух динамических рядов.
3.
Третьей особенностью является
изменение тесноты
Вначале устраняем временной лаг, значение которого определяем графически или подбором; с расчетом коэффициента корреляции.
Затем приступаем к исследованию взаимосвязи уровней. Существует четыре направления изучения корреляционной зависимости между уровнями двух динамических рядов:
- коррелирование уровней;
- коррелированно разностей;
- коррелирование остатков (отклонений от трендов);
- коррелирование с учетом фактора времени.
Нам следует построить уравнение авторегрессии для каждого из изучаемых динамических рядов, проверив наличие временного лага:
где
L – величина временного лага (L=1).
Для динамического ряда xi:
Для динамического
ряда yi:
Т.к. полученные коэффициенты корреляции больше табличного, то переходим к следующему методу.
По первоначальным динамическим рядам xi, yi с количеством членов n строим новые динамические ряды ui, wi с количеством членов n-1(табл.3.2.1), где:
Таблица
3.2.1
|
Далее
считаем автокорреляцию для динамических
рядов u и w:
Для динамического ряда ui:
Для динамического ряда wi:
Т.к. полученные коэффициенты корреляции больше табличного, то переходим к следующему методу.
В данном случае зависимость ищется в виде eyi=f(exi), где:
Значения и представлены в табл.3.3.1:
Таблица 3.3.1
3642,182105 | 5521,14579 |
4045,276912 | 5549,19234 |
4270,521342 | 5237,823029 |
4251,468517 | 4673,817411 |
3987,065165 | 4011,580844 |
3541,933559 | 3431,813196 |
3029,073401 | 3093,139015 |
2579,614001 | 3089,646833 |
2307,713526 | 3425,703505 |
2280,001083 | 4014,785285 |
2497,741411 | 4702,638546 |
2896,496334 | 5308,570463 |
3363,373599 | 5673,816955 |
3767,245937 | 5704,040732 |
3993,851263 | 5394,583544 |
3976,378415 | 4831,713105 |
3713,351191 | 4169,53091 |
3269,023502 | 3588,722272 |
2756,179857 | 3248,190391 |
2305,945146 | 3242,52107 |
2032,68507 | 3576,663941 |
2003,392677 | 4164,607546 |
2219,755627 | 4852,402924 |
2617,70444 | 5459,372744 |
3084,562645 | 5826,4751 |
Для признака xi:
Для признака yi:
Т.к. полученные коэффициенты корреляции опять больше табличного, то переходим к следующему методу.
Для более удобного
расчёта изменяем масштаб времени,
т.е. Dt
=1. Простейшее уравнение регрессии имеет
вид:
Тогда система уравнений, полученная методом наименьших квадратов имеет следующий вид:
Необходимо отметить, что в этом методе коэффициент автокорреляции не исследуется.
Решение
системы уравнений методом
Таблица 3.4.1
t | x2 | xt | yx | t2 | yt | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 | 8410000 | 2900 | 14111400 | 1 | 4866 | 710092,7896 | |
2 | 12531600 | 7080 | 18018600 | 4 | 10180 | 534945,7467 | |
3 | 15023376 | 11628 | 19093176 | 9 | 14778 | 144386,4657 | |
4 | 16321600 | 16160 | 18786000 | 16 | 18600 | 0,047492264 | |
5 | 15178816 | 19480 | 16051520 | 25 | 20600 | 234012,5049 | |
6 | 12816400 | 21480 | 13281800 | 36 | 22260 | 583789,6833 | |
7 | 9302500 | 21350 | 10107700 | 49 | 23198 | 858020,2697 | |
8 | 6760000 | 20800 | 8502000 | 64 | 26160 | 601299,3152 | |
9 | 4857616 | 19836 | 7436296 | 81 | 30366 | 252847,3424 | |
10 | 4494400 | 21200 | 8119600 | 100 | 38300 | 899,2211526 | |
11 | 4946176 | 24464 | 9563200 | 121 | 47300 | 133539,1856 | |
12 | 6969600 | 31680 | 12909600 | 144 | 58680 | 531592,5221 | |
13 | 9672100 | 40430 | 16252860 | 169 | 67938 | 660179,6832 | |
14 | 13395600 | 51240 | 19947000 | 196 | 76300 | 555049,3853 | |
15 | 15968016 | 59940 | 21122856 | 225 | 79290 | 154919,9389 | |
16 | 17472400 | 66880 | 20941800 | 256 | 80160 | 16,86990836 | |
17 | 16128256 | 68272 | 17991680 | 289 | 76160 | 221023,9832 | |
18 | 13690000 | 66600 | 14837000 | 324 | 72180 | 656820,769 | |
19 | 10048900 | 60230 | 11646580 | 361 | 69806 | 832979,8976 | |
20 | 7398400 | 54400 | 9873600 | 400 | 72600 | 580367,2874 | |
21 | 5779216 | 50484 | 8976536 | 441 | 78414 | 278922,6984 | |
22 | 5017600 | 49280 | 9385600 | 484 | 92180 | 267,9934274 | |
23 | 5494336 | 53912 | 10923040 | 529 | 107180 | 143676,3624 | |
24 | 7617600 | 66240 | 14490000 | 576 | 126000 | 551633,6354 | |
25 | 10432900 | 80750 | 18139680 | 625 | 140400 | 732960,1726 | |
Сумма | 325 | 255727408 | 986716 | 350509124 | 5525 | 1453896 | 9954243,77 |
Далее определяем индекс корреляции:
где yx(xi) – значение величины y, рассчитанное по уравнению регрессии при подстановке в него значений xi и ti; yi – значения y из исходной таблицы.
Значимость индекса корреляции определяем с помощью критерия Фишера, фактическое значение критерия Фишера равно:
Табличное значение критерия Фишера определяем по табл.5 приложения, задаваясь уравнением значимости a и числом степеней свободы k1=m-1; k2=n-m.
Если
Определим коэффициент детерминации:
Следовательно,
величина y зависит от величин x
и t на 98,01%. Остальные 1,99% - это зависимость
величины y от неучтённых величин.
Подводя
итог необходимо отметить, что в исследовании
методом коррелирования динамических
рядов, с учётом фактора времени была определена
весьма высокая теснота связи, равная
0,9900; величина коэффициента детерминации
равная 0,9801 говорит о том, что величина
y зависит от величин x и t, включённых
в уравнение, на 98,01%, все остальные 1,99%
- это зависимость величины y от неучтённых
величин.
Информация о работе Изучение корреляционной зависимости между уровнями двух динамических рядов