Автор: Пользователь скрыл имя, 15 Декабря 2014 в 01:54, курсовая работа
Моделирование относится к достаточно сложным методам. Но сложность окупается получаемыми с помощью моделей результатами. С помощью моделей (особенно в процессах со многими входными параметрами, когда нельзя представить зависимости показателя качества от этих параметров графически) можно легко проигнорировать значение получающегося качества процесса или продукта при тех или иных условиях, можно организовать поиск наилучших (оптимальных) условий проведения процесса чтобы снизить затраты, повысить потребительские свойства продукта или полуфабриката, повысить производительность и решить ряд других задач по улучшению качества процессов.
Введение 5
1. Теоретическая часть 6
1.1 Планирование эксперимента 6
1.2 Композиционные планы 6
1.3 Ортогональные центральные композиционные планы 8
2. Практическая часть 9
2.1 Исходные данные варианта №1 9
2.2. Проверка условий применимости регрессионного анализа 11
2.2.1 Проверка воспроизводимости опытов. 13
2.3 Расчёт коэффициентов регрессии 15
2.3.1 Уравнение нормированной модели 15
2.3.2 Линейные коэффициенты 15
2.3.3 Смешанные коэффициенты 16
2.3.4 Квадратичные коэффициенты 16
2.3.5 Свободный член 17
2.4. Проверка значимости коэффициентов 18
2.5. Проверка адекватности полученной модели 22
Заключение 24
Список использованной литературы 25
ПРИЛОЖЕНИЕ Б
Критические значения коэффициента Стьюдента (t-критерия).
f - числа степеней свободы
p - доверительная вероятность
f |
p | |||||||
0.80 |
0.90 |
0.95 |
0.98 |
0.99 |
0.995 |
0.998 |
0.999 | |
1 |
3.0770 |
6.3130 |
12.706 |
31.820 |
63.656 |
127.656 |
318.306 |
636.619 |
2 |
1.8850 |
2.9200 |
4.3020 |
6.964 |
9.924 |
14.089 |
22.327 |
31.599 |
3 |
1.6377 |
2.3534 |
3.182 |
4.540 |
5.840 |
7.458 |
10.214 |
12.924 |
4 |
1.5332 |
2.1318 |
2.776 |
3.746 |
4.604 |
5.597 |
7.173 |
8.610 |
5 |
1.4759 |
2.0150 |
2.570 |
3.649 |
4.0321 |
4.773 |
5.893 |
6.863 |
6 |
1.4390 |
1.943 |
2.4460 |
3.1420 |
3.7070 |
4.316 |
5.2070 |
5.958 |
7 |
1.4149 |
1.8946 |
2.3646 |
2.998 |
3.4995 |
4.2293 |
4.785 |
5.4079 |
8 |
1.3968 |
1.8596 |
2.3060 |
2.8965 |
3.3554 |
3.832 |
4.5008 |
5.0413 |
9 |
1.3830 |
1.8331 |
2.2622 |
2.8214 |
3.2498 |
3.6897 |
4.2968 |
4.780 |
10 |
1.3720 |
1.8125 |
2.2281 |
2.7638 |
3.1693 |
3.5814 |
4.1437 |
4.5869 |
11 |
1.363 |
1.795 |
2.201 |
2.718 |
3.105 |
3.496 |
4.024 |
4.437 |
12 |
1.3562 |
1.7823 |
2.1788 |
2.6810 |
3.0845 |
3.4284 |
3.929 |
4.178 |
13 |
1.3502 |
1.7709 |
2.1604 |
2.6503 |
3.1123 |
3.3725 |
3.852 |
4.220 |
14 |
1.3450 |
1.7613 |
2.1448 |
2.6245 |
2.976 |
3.3257 |
3.787 |
4.140 |
15 |
1.3406 |
1.7530 |
2.1314 |
2.6025 |
2.9467 |
3.2860 |
3.732 |
4.072 |
16 |
1.3360 |
1.7450 |
2.1190 |
2.5830 |
2.9200 |
3.2520 |
3.6860 |
4.0150 |
17 |
1.3334 |
1.7396 |
2.1098 |
2.5668 |
2.8982 |
3.2224 |
3.6458 |
3.965 |
18 |
1.3304 |
1.7341 |
2.1009 |
2.5514 |
2.8784 |
3.1966 |
3.6105 |
3.9216 |
19 |
1.3277 |
1.7291 |
2.0930 |
2.5395 |
2.8609 |
3.1737 |
3.5794 |
3.8834 |
20 |
1.3253 |
1.7247 |
2.0860 |
2.5280 |
2.8453 |
3.1534 |
3.5518 |
3.8495 |
21 |
1.3230 |
1.7200 |
2.2.079 |
2.5170 |
2.8310 |
3.1350 |
3.5270 |
3.8190 |
22 |
1.3212 |
1.7117 |
2.0739 |
2.5083 |
2.8188 |
3.1188 |
3.5050 |
3.7921 |
23 |
1.3195 |
1.7139 |
2.0687 |
2.4999 |
2.8073 |
3.1040 |
3.4850 |
3.7676 |
24 |
1.3178 |
1.7109 |
2.0639 |
2.4922 |
2.7969 |
3.0905 |
3.4668 |
3.7454 |
25 |
1.3163 |
1.7081 |
2.0595 |
2.4851 |
2.7874 |
3.0782 |
3.4502 |
3.7251 |
26 |
1.315 |
1.705 |
2.059 |
2.478 |
2.778 |
3.0660 |
3.4360 |
3.7060 |
27 |
1.3137 |
1.7033 |
2.0518 |
2.4727 |
2.7707 |
3.0565 |
3.4210 |
3.6896 |
28 |
1.3125 |
1.7011 |
2.0484 |
2.4671 |
2.7633 |
3.0469 |
3.4082 |
3.6739 |
29 |
1.3114 |
1.6991 |
2.0452 |
2.4620 |
2.7564 |
3.0360 |
3.3962 |
3.8494 |
30 |
1.3104 |
1.6973 |
2.0423 |
2.4573 |
2.7500 |
3.0298 |
3.3852 |
3.6460 |
32 |
1.3080 |
1.6930 |
2.0360 |
2.4480 |
2.7380 |
3.0140 |
3.3650 |
3.6210 |
34 |
1.3070 |
1.6909 |
2.0322 |
2.4411 |
2.7284 |
3.9520 |
3.3479 |
3.6007 |
ПРИЛОЖЕНИЕ В
Критические значения для критерия Фишера (F-критерия)
уровень значимости p=0,05
f1 |
1 |
2 |
3 |
4 |
5 |
6 |
8 |
12 |
24 |
∞ |
f2 | ||||||||||
1 |
161,45 |
199,50 |
215,72 |
224,57 |
230,17 |
233,97 |
238,89 |
243,91 |
249,04 |
254,32 |
2 |
18,51 |
19,00 |
19,16 |
19,25 |
19,30 |
19,33 |
19,37 |
19,41 |
19,45 |
19,50 |
3 |
10,13 |
9,55 |
9,28 |
9,12 |
9,01 |
8,94 |
8,84 |
8,74 |
8,64 |
8,53 |
4 |
7,71 |
6,94 |
6,59 |
6,39 |
6,26 |
6,16 |
6,04 |
5,91 |
5,77 |
5,63 |
5 |
6,61 |
5,79 |
5,41 |
5,19 |
5,05 |
4,95 |
4,82 |
4,68 |
4,53 |
4,36 |
6 |
5,99 |
5,14 |
4,76 |
4,53 |
4,39 |
4,28 |
4,15 |
4,00 |
3,84 |
3,67 |
7 |
5,59 |
4,74 |
4,35 |
4,12 |
3,97 |
3,87 |
3,73 |
3,57 |
3,41 |
3,23 |
8 |
5,32 |
4,46 |
4,07 |
3,84 |
3,69 |
3,58 |
3,44 |
3,28 |
3,12 |
2,93 |
9 |
5,12 |
4,26 |
3,86 |
3,63 |
3,48 |
3,37 |
3,23 |
3,07 |
2,90 |
2,71 |
10 |
4,96 |
4,10 |
3,71 |
3,48 |
3,33 |
3,22 |
3,07 |
2,91 |
2,74 |
2,54 |
11 |
4,84 |
3,98 |
3,59 |
3,36 |
3,20 |
3,09 |
2,95 |
2,79 |
2,61 |
2,40 |
12 |
4,75 |
3,88 |
3,49 |
3,26 |
3,11 |
3,00 |
2,85 |
2,69 |
2,50 |
2,30 |
13 |
4,67 |
3,80 |
3,41 |
3,18 |
3,02 |
2,92 |
2,77 |
2,60 |
2,42 |
2,21 |
14 |
4,60 |
3,74 |
3,34 |
3,11 |
2,96 |
2,85 |
2,70 |
2,53 |
2,35 |
2,13 |
15 |
4,54 |
3,68 |
3,29 |
3,06 |
2,90 |
2,79 |
2,64 |
2,48 |
2,29 |
2,07 |
16 |
4,49 |
3,63 |
3,24 |
3,01 |
2,85 |
2,74 |
2,59 |
2,42 |
2,24 |
2,01 |
17 |
4,45 |
3,59 |
3,20 |
2,96 |
2,81 |
2,70 |
2,55 |
2,38 |
2,19 |
1,96 |
18 |
4,41 |
3,55 |
3,16 |
2,93 |
2,77 |
2,66 |
2,51 |
2,34 |
2,15 |
1,92 |
19 |
4,38 |
3,52 |
3,13 |
2,90 |
2,74 |
2,63 |
2,48 |
2,31 |
2,11 |
1,88 |
20 |
4,35 |
3,49 |
3,10 |
2,87 |
2,71 |
2,60 |
2,45 |
2,28 |
2,08 |
1,84 |
21 |
4,32 |
3,47 |
3,07 |
2,84 |
2,68 |
2,57 |
2,42 |
2,25 |
2,05 |
1,81 |
22 |
4,30 |
3,44 |
3,05 |
2,82 |
2,66 |
2,55 |
2,40 |
2,23 |
2,03 |
1,78 |
23 |
4,28 |
3,42 |
3,03 |
2,80 |
2,64 |
2,53 |
2,38 |
2,20 |
2,00 |
1,76 |
24 |
4,26 |
3,40 |
3,01 |
2,78 |
2,62 |
2,51 |
2,36 |
2,18 |
1,98 |
1,73 |
25 |
4,24 |
3,38 |
2,99 |
2,76 |
2,60 |
2,49 |
2,34 |
2,16 |
1,96 |
1,71 |
26 |
4,22 |
3,37 |
2,98 |
2,74 |
2,59 |
2,47 |
2,32 |
2,15 |
1,95 |
1,69 |
27 |
4,21 |
3,35 |
2,96 |
2,73 |
2,57 |
2,46 |
2,30 |
2,13 |
1,93 |
1,67 |
28 |
4,20 |
3,34 |
2,95 |
2,71 |
2,56 |
2,44 |
2,29 |
2,12 |
1,91 |
1,65 |
29 |
4,18 |
3,33 |
2,93 |
2,70 |
2,54 |
2,43 |
2,28 |
2,10 |
1,90 |
1,64 |
30 |
4,17 |
3,32 |
2,92 |
2,69 |
2,53 |
2,42 |
2,27 |
2,09 |
1,89 |
1,62 |
35 |
4,12 |
3,26 |
2,87 |
2,64 |
2,48 |
2,37 |
2,22 |
2,04 |
1,83 |
1,57 |
40 |
4,08 |
3,23 |
2,84 |
2,61 |
2,45 |
2,34 |
2,18 |
2,00 |
1,79 |
1,51 |
45 |
4,06 |
3,21 |
2,81 |
2,58 |
2,42 |
2,31 |
2,15 |
1,97 |
1,76 |
1,48 |
Информация о работе Получение математической модели методом ОЦКП