Автор: Пользователь скрыл имя, 23 Сентября 2013 в 12:41, контрольная работа
Очень часто перед исследователем в психологии стоит задача выявления различий между двумя, тремя и более выборками испытуемых.
Это может быть, например:
задача определения психологических особенностей хронически больных детей по сравнению со здоровыми;
юных правонарушителей по сравнению с законопослушными сверстниками;
различий между работниками государственных предприятий и частных фирм;
между людьми разной национальности или разной культуры;
и, наконец, между людьми разного возраста в методе "поперечных срезов".
ВВЕДЕНИЕ
Очень часто перед исследователем в психологии стоит задача выявления различий между двумя, тремя и более выборками испытуемых.
Это может быть, например:
Иногда по выявленным в исследовании статистически достоверным различиям формируется "групповой профиль" или "усредненный портрет" человека той или иной профессии, статуса, соматического заболевания и др.
В последние годы все чаще встает задача выявления психологического портрета специалиста новых профессий:
Такого рода исследования не всегда подразумевают участие двух или более выборок. Иногда обследуется одна, но достаточно представительная выборка численностью не менее 60 человек, а затем внутри, этой выборки выделяются группы более и менее успешных специалистов, и их данные по исследованным переменным сопоставляются между собой.
При решении задач выявления различий в уровневых показателях следует помнить, что "усредненный профиль успешного специалиста" должен рассматриваться скорее как исследовательский результат, позволяющий сформулировать гипотезы для дальнейших исследований, а не как основание для профессионального отбора.
Тому есть две причины:
- Во-первых, ни у одного из успешных специалистов может не наблюдаться "усредненный профиль" - он, в сущности, является отвлеченным обобщением;
- Во-вторых, в профессиональной деятельности наличие собственного индивидуального стиля важнее соответствия "среднегрупповому" профилю.
Недостаток в тех качествах, которые могут казаться важными, компенсируется другими качествами. У каждого успешного специалиста его психологические свойства создают неповторимый ансамбль, который при усреднении данных теряется. Р.Б. Кеттелл, учитывая это, предлагал при исследовании профессиональной успешности включать в рассмотрение индивидуальные профили выдающихся представителей той или иной профессии.
Сопоставление уровневых показателей в разных выборках может быть необходимой частью комплексных диагностических, учебных, психокоррекционных и иных программ. Оно помогает нам обратить внимание на те особенности обследованных выборок, которые должны быть учтены и использованы при адаптации программ к данной группе в процессе их конкретного воплощения.
ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА
Н - КРИТЕРИЙ КРУСКАЛА-УОЛЛИСА
Для того, чтобы грамотно обрабатывать психологические данные, необходимо знать какие явления вы используете.
Такими явлениями могут быть:
Понятия признака и переменной могут использоваться как взаимозаменяемые. Они являются наиболее общими. Иногда вместо них используются понятия показателя или уровня, например, уровень настойчивости, показатель вербального интеллекта и др.[1].
Понятия показателя и уровня
указывают на то, что признак может
быть измерен количественно, так
как к ним применимы
Значения признака определяются при помощи специальных шкал измерения.
Номинативная шкала - это шкала, классифицирующая по названию: потеп (лат.) - имя, название. Название же не измеряется количественно, оно лишь позволяет отличить один объект от другого или одного субъекта от другого. Номинативная шкала - это способ классификации объектов или субъектов, распределения их по ячейкам классификации.
Порядковая шкала - это шкала, классифицирующая по принципу "больше - меньше". Если в шкале наименований было безразлично, в каком порядке мы расположим классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки "самое малое значение" к ячейке "самое большое значение" (или наоборот).
Интервальная шкала - это шкала, классифицирующая по принципу "больше на определенное количество единиц - меньше на определенное количество единиц". Каждое из возможных значений признака отстоит от другого на равном расстоянии.
Шкала равных отношений - это шкала, классифицирующая объекты или субъектов пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета.
Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде. Благодаря гипотезам исследователь не теряет путеводной нити в процессе расчетов и ему легко понять после их окончания, что, собственно, он обнаружил.
Статистические гипотезы подразделяются на нулевые и альтернативные, направленные и ненаправленные.
Нулевая гипотеза - это гипотеза об отсутствии различий. Она обозначается как H0 и называется нулевой потому, что содержит число 0: X1-Х2=0, где X1, X2 - сопоставляемые значения признаков. Нулевая гипотеза - это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.
Альтернативная гипотеза - это гипотеза о значимости различий. Она обозначается как H1. Альтернативная гипотеза - это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой. Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.
Направленные гипотезы:
H0: X1 не превышает Х2
H1: X1 превышает Х2
Ненаправленные гипотезы:
H0: X1 не отличается от Х2
Н1: Х1 отличается от Х2
Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью.[5]
Статистические критерии обозначают также метод расчета определенного числа и само это число.
Критерии делятся на параметрические и непараметрические.
Параметрические критерии: Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (t - критерий Стьюдента, критерий F и др.)
Непараметрические критерии: Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий ТВилкоксона и др.)
Уровень значимости - это вероятность того, что мы сочли различия существенными, а они на самом деле случайны. Иными словами это вероятность отклонения нулевой гипотезы, в то время как она верна.
Мощность критерия - это его способность выявлять различия, если они есть. Иными словами, это его способность отклонить нулевую гипотезу об отсутствии различий, если она неверна.
Мощность критерия определяется эмпирическим путем.
Основанием для выбора того или иного критерия при решении задачи является не только его мощность, но и такие характеристики как:
а) простота;
б) более широкий диапазон использования (например, по отношению к данным, определенным по номинативной шкале, или по отношению к большим n);
в) применимость по отношению к неравным по объему выборкам;
г) большая информативность результатов.
Для каждого критерия уже существует свой алгоритм расчетов.
2.1 Описание критерия
Критерий предназначен для оценки различий одновременно между тремя, четырьмя и т.д. выборками по уровню какого-либо признака.
Он позволяет установить, что уровень признака изменяется при переходе от группы к группе, но не указывает на направление этих изменений.
Критерий Н иногда рассматривается как непараметрический аналог метода дисперсионного однофакторного анализа для несвязных выборок.[6] Иногда его называют критерием "суммы рангов".[4]
Данный критерий является продолжением критерия U на большее, чем 2, количество сопоставляемых выборок. Все индивидуальные значения ранжируются так, как если бы это была одна большая выборка. Затем все индивидуальные значения возвращаются в свои первоначальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке.
Если различия между выборками случайны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между выборками. Но если в одной из выборок будут преобладать низкие значения рангов, в другой - высокие, а в третьей - средние, то критерий Н позволит установить эти различия.
2.2 Гипотезы Н - критерия Крускала-Уоллиса
H0: Между выборками 1, 2, 3 и т. д. существуют лишь случайные различия по уровню исследуемого признака.
Н1: Между выборками 1, 2, 3 и т. д. существуют неслучайные различия по уровню исследуемого признака.
2.3 Графическое представление критерия Н
Критерий Н оценивает общую сумму перекрещивающихся зон при сопоставлении всех обследованных выборок.
- Если суммарная область наложения мала (Рис. 2.6 (а)), то различия достоверны;
-Если она достигает определенной критической величины и превосходит ее (Рис. 1 (б)), то различия между выборками оказываются недостоверными.
Рис.1. 2 возможных варианта соотношения рядов значений в трех выборках; штриховкой отмечены зоны наложения.
2.4 Ограничения критерия Н
1. При сопоставлении 3-х выборок допускается, чтобы в одной из них п—Ъ, а двух других n=2. Но при таких численных составах выборок мы сможем установить различия лишь на низшем уровне значимости (р≤0,05).
Для того, чтобы оказалось
возможным диагностировать
2. Критические значения критерия Н и соответствующие им уровни значимости приведены в Табл. 1. Таблица предусмотрена только для трех выборок и {n1, n2, n3}≤5.
Таблица 1
При большем количестве выборок и испытуемых в каждой выборке необходимо пользоваться Таблицей критических значений критерия χ2, поскольку критерий Крускала-Уоллиса асимптотически приближается к распределению χ2.[4]