Автор: Пользователь скрыл имя, 21 Ноября 2010 в 21:18, реферат
Целью данного реферата является изучение биографии, научной деятельности французского ученого-математика Огюстена Луи Коши. Необходимо рассмотреть его достижения и оценить вклад в науку. О продуктивности Коши-математика свидетельствует целый ряд терминов, определений и понятий, вошедших в науку, таких, как признак Коши, критерий Коши, задачи Коши, интеграл Коши, уравнения Коши–Римана и Коши–Ковалевской, относящиеся к разным разделам математического анализа, математической физики, теории чисел, и других дисциплин. Рассмотрим подробнее его жизнь и деятельность.
Путь в науку и к профессорской кафедре был у Огюстена Коши, можно сказать, образцовым. В 1807 году он заканчивает Политехническую школу. Инженерному делу он учится в Школе мостов и дорог. По окончании учебы в 1810 году начинает свой трудовой путь инженером на сооружении военного порта в Шербуре. Это было время расцвета империи Наполеона. Падение же «великого завоевателя» и реставрация монархии Бурбонов привели молодого Коши сначала в Политехническую школу, а затем в Сорбонну и Коллеж де Франс уже в качестве профессора.
Ничто так не высвечивает характеры людей, как грандиозные социальные встряски, подобные Великой французской революции, которую ныне чествует весь мир, взлету и падению Наполеона, реставрации, Ста дням и второй реставрации Бурбонов. Не будь революции, мы бы и не знали, что знаменитый математик и творец «Небесной механики» Лаплас был политически беспринципным человеком. Первый том своего бессмертного произведения он посвятил «Наполеону Великому», а последний — сменившему Наполеона монарху. И не прогадал: Наполеон сделал его графом, а король — пэром и маркизом..
Иначе сложилась судьба другого математика времён Великой французской революции — геометра и якобинца Гаспара Монжа. Морской министр первой французской республики, организатор её обороны, с возвращением Бурбонов на трон он потерял всё: был лишён всех титулов и наград, изгнан из Академии наук и вынужден скрываться от властей.
У свидетелей этого белого террора реставрации, естественно, возникал вопрос: кто займет место Монжа в академии? Найдется ли во Франции математик, настолько лишённый чувства приличия, чтобы занять место чистейшего и добрейшего гражданина, крупнейшего учёного, создателя Политехнической школы, воспитавшей десятки учёных с мировым именем?..
Такой человек нашёлся. Это был выпускник этой школы ученик Монжа Огюстен Луи Коши, проявивший себя как ярый монархист. И тут нечему удивляться: Коши был не избран в Парижскую академию, а назначен властями.
Потому и сетуя по поводу столь жёстких репрессивных мер, применённых к республиканцу Монжу, в те времена с возмущением говорили: «Его место беззастенчиво занял Коши — великий учёный, не наделённый, однако, совестью. Он был преступно невнимателен к молодым учёным, терял их работы. Он — соучастник, одна из причин гибели Галуа и Абеля».
Такой
малопривлекательный
Но доброе сердце Монжа не передалось ни великому честолюбцу Наполеону Бонапарту, ни будущему великому математику Коши. И кто бы мог подумать, что из юноши, взращенного революцией, получится в конечном итоге ярый реакционер, клерикал, даже ультрареакционер! Но такова жизнь, таковы уроки истории: титанические усилия воспитателей приводят порой к обратным целям, как это не раз уже показали результаты назойливой пропаганды.
Чтобы не впасть в ту же назойливость, предвзятость, которая нередко мешает становлению объективного взгляда на вещи и на людей, приходится задаться вопросом: а не искажён ли образ Коши его недоброжелателями или политическими противниками, сложившими столь стойкую легенду? Поэтому послушаем и другую сторону.
Известный голландский учёный Г. Фройденталь, например, по отношению к историям с «непризнанными гениями» настроен весьма критически. «Душещипательные истории, — пишет он, — которые рассказывают об Абеле, просто выдумка... Абель умер не от голода, а от туберкулёза... То, что Коши затерял одну из его работ, — клеветническая выдумка. Во всяком случае верно, что Абель умер слишком рано и не успел завоевать большей славы. Это же относится и к Галуа...»
Нам не известно, терял ли рукописи Абеля академик Коши, но есть сведения, что он их быстро нашёл и дал хвалебный отзыв, когда Нильс Хенрик Абель уже умер. Что же касается истинного сына революции гениального математика и республиканца Галуа, то хорошо известно, что на его работы Коши не дал ответа. И нет ничего удивительного в том, что в последнем, предсмертном письме другу перед трагической дуэлью Эварист Галуа просил: «Ты публично попросишь Якоби или Гаусса дать заключение не о справедливости, а о значении этих теорем. После этого, я надеюсь, найдутся люди, которые сочтут нужным расшифровать всю эту галиматью». Как видим, он не внёс Коши в число немногих авторитетов в математике, которым бы мог довериться.
Историю не переделаешь. Личность не перекуешь. Во время второй французской революции Коши оставил свою кафедру в Политехнической школе и покинул страну. В биографических словарях и справочниках без эмоций сообщается, что он в это время будто бы «путешествовал» по Европе. А ведь он попросту бежал от революции, которой страшился и которую ненавидел. Прожив несколько лет в Турине и в Праге, он возвратился в Париж в 1838 году, но занимать официальные учёные посты отказался из-за неприязни к режиму. После революции 1848 года и установления буржуазной революции ему было разрешено остаться в стране. Он остался и даже занял кафедру, но при одном условии, чтобы ему разрешили преподавать «без условий», то есть без присяги правительству. Завидное постоянство!
Чтобы характеристика Коши и его отношения к другим учёным, и не только молодым, не показались предвзятыми, приведём ещё один небезынтересный эпизод. Речь идет об ученике и последователе Монжа, выдающемся геометре и механике Жане Викторе Понселе. Будучи офицером инженерных войск Наполеона, вместе с 26 тысячами французов он попал в плен к русским. И там, в плену, в далеком от европейских научных центров Саратове, написал семь тетрадей, которые по возвращении в Париж превратились в ныне знаменитый «Трактат о проективных свойствах фигур», где были обстоятельно изложены принципы новой науки — проективной геометрии и впервые сформулирован принцип двойственности.
Но, как отмечают историки Эрнест Лависс и Альфред Рамбо, его работы, посланные в Академию наук в 1824 году, не встретили того приема, какого он ожидал. Коши в своих докладах ставил «новую геометрию», как называл её Понселе, ниже анализа. Понселе, надолго сохранивший об этой «сравнительно маленькой» неудаче неприятное воспоминание, отдался почти исключительно изучению практической механики. Надо сказать, что и в этой новой области он замечательно преуспел.
Проницательность Понселе и странную «слепоту» Коши хорошо объясняют слова голландского математика Д. Я. Стройка: «Иной раз большие новые идеи рождаются вне, а не внутри школ».
Примечателен и другой факт, характеризующий Коши несколько иначе. Потому и умолчать о нём нельзя. В 1822 году Михаила Васильевича Остроградского посадили в парижскую долговую тюрьму по требованию хозяина гостиницы, которому он сильно задолжал. Пребывая в тюрьме, Остроградский написал мемуар по теории волн в сосуде цилиндрической формы и послал его на рассмотрение Коши. Тот не отверг работу и не затерял её, а одобрил и добился опубликования в Трудах Парижской академии наук. Более того, он выкупил Михаила Васильевича из тюрьмы, не будучи уже очень богатым, и порекомендовал его на должность преподавателя в лицее. А казалось бы странным: убеждённый клерикал выручил бывшего студента Харьковского университета, лишённого диплома за вольнодумство и непосещение лекций по богословию. Было ли это проявлением неосведомленности Коши в вопросах политических взглядов русского математика, трудно сказать. Достоверно известно лишь одно: в 1831 году Огюстен Луи Коши стал почётным иностранным членом Петербургской академии наук, тогда как другого французского математика и философа-просветителя маркиза Кондорсэ, активно участвовавшего в Великой французской революции (на первом её этапе), по велению Екатерины II из академии исключили.
Нет
слов, почётные титулы великого математика
Коши вполне им заслужены на научном
поприще. Но приведём в заключение ещё
одно высказывание, касающееся людей
науки. «Если человек трудится только
для себя, — писал К. Маркс, — он
может, пожалуй, стать знаменитым учёным,
великим мудрецом, превосходным поэтом,
но никогда не сможет стать истинно совершенным
и великим человеком».
В геометрии он обобщил теорию многогранников, дал новый способ исследования поверхностей второго порядка, интересные исследования касания, выпрямления и квадратуры кривых и установил правила приложения анализа к геометрии.
В
анализе Коши первый усмотрел огромное
значение мнимого переменного и
возможность его
В
механике заменил понятие о
В физике дал общее уравнение движения светового эфира, установил законы преломления и отражения, не прибегая к сомнительным гипотезам.
В астрономии дал новый способ вычисления движения планет.
Коши
написал более 700 мемуаров., полный список
которых помещен в книге
Что касается математики – вклад О.Л.Коши имеет огромное значение:
впервые
систематически изучавшаяся О. Коши.
Заключается в нахождении решения и (х,
t); x = (х1,..., хn) дифференциального
ур-ния вида:
где Go - носитель начальных данных - область гиперплоскости t = to пространства переменных x1 ..., хn. Когда F и fn, k - 0, ..., т -1, являются аналитич. функциями своих аргументов, задача Коши (1), (2) в нек-рой области G пространства переменных t, x, содержащей G0, всегда имеет и притом единственное решение. Однако это решение может оказаться неустойчивым (т. е. малое изменение начальных данных может вызвать сильное изменение решения), напр, в том случае, когда ур-ние (1) принадлежит эллиптич. типу. При неаналитич. данных задача Коши (1), (2) может потерять смысл, если не ограничиться рассмотрением того случая, когда ур-ние (1) является гиперболическим.
где гамма - простая замкнутая спрямляемая кривая в комплексной плоскости и f(t) - функция комплексного переменного t, аналитическая на гамма и внутри у. Если точка z лежит внутри гамма, то К. и. равен f(z), т. о., любая аналитич. функция может быть посредством К. и. выражена через свои значения на замкнутом контуре. К. и. впервые рассмотрен О. Коши (1831).
Обобщением
К. и. являются интегралы типа Коши;
они имеют тот же вид, но кривая
у не предполагается замкнутой и
функция f(t) не предполагается аналитической.
Такие интегралы по-прежнему определяют
аналитич. функции; их значения на гамму
отличаются, вообще говоря, от функции
f(t). Систематич. изучение их было начато
Ю. В. Сохоцким и впоследствии продолжалось
гл. обр. русскими и советскими математиками
(Ю. Г. Колосов, В. В. Голубев, И. И. Привалов,
Н. И. Мусхелишвили) как в направлении дальнейших
обобщений, так и для приложения к вопросам
механики.
Одно из важнейших и наиболее употребит, неравенств. Доказано О. Коши (1821). Интегральный аналог К. н. установлен рус. математиком В. Я. Бундковским (см. Буняковского неравенство), интересное обобщение К. н. сделано нем. математиком О. Гёльдером (см. Гёлъдера неравенство).
4) КОШИ РАСПРЕДЕЛЕНИЕ, специальный вид распределения вероятностей случайных величин. Введено О. Коши', характеризуется плотностью характеристич. функция