Автор: Пользователь скрыл имя, 05 Февраля 2013 в 18:12, реферат
Обычно рассматривают коррозию металлических материалов. Однако это явление характерно не только для металлов и сплавов, аналогичные процессы могут происходить и в неметаллических материалах – пластмассах, керамике. Примером такого коррозионного воздействия может служить износ футеровки плавильных печей под действием жидкого, химически активного шлака.
По хладостойкости металлические материалы, используемые при низких температурах, условно могут быть разбиты на четыре основные группы.
1. Металлы и сплавы, характеристики механических свойств которых позволяют использовать их при температурах до –60 °С, т. е. до низких климатических температур, для изготовления изделий так называемого северного исполнения. К этой группе относятся качественные углеродистые и низколегированные стали ферритного и перлитного классов с ОЦК решеткой.
2. Ко второй группе относятся сплавы, сохраняющие вязкость и пластичность при охлаждении до 170 К. Это стали с 0,2 – 0,3 % С, дополнительно легированные Ni, Cr, Ti, Mo. К этой группе относятся, например, низкоуглеродистые ферритные стали с 2 – 5 % Ni, используемые при температурах 210 – 150 К.
3. К третьей группе относятся сплавы, способные без ухудшения свойств выдерживать температуры до 77 К (температура кипения жидкого азота). Сюда относятся стали типа 12Х18Н10Т, 0Н9А, большинство сплавов на основе Al, Ti, Сu, не обнаруживающих склонности к хрупкому разрушению. Для ненагруженных конструкций с целью экономии Ni применяют Сr – Мn и Cr – N – Mn стали типа 10Х14Г14Н4Т (ЭИ711), 03Х13АГ19 (ЧС36), 07Х21Г7АН5(ЭП222).
4. К четвертой группе относятся сплавы, работающие при температуре ниже 77 К. К этой группе принадлежат материалы, используемые в космической технике, производстве и потреблении водорода, экспериментальной физике. Для работы при таких температурах пригодны лишь высоколегированные коррозионностойкие стали типа 03Х20Н16АГ6, 10Х11Н23ТЗМР (ЭПЗЗ), некоторые бронзы, никелевые, алюминиевые сплавы, легированные магнием, и сплавы титана.
Хладостойкие стали. Хладостойкость сталей климатического холода
Механические свойства и хладноломкость стали определяются прежде всего тремя механизмами упрочнения:
1) измельчением зерна;
2) упрочнением феррита
атомами легирующих элементов
и примесей, образующими твердые
растворы внедрения и
3) упрочнением выделениями частиц второй фазы различной степени дисперсности.
Углерод, хотя и способствует эффективному упрочнению, резко снижает вязкость и пластичность стали, способствуя повышению хладноломкости. Принято считать, что увеличение содержания углерода в стали на каждые 0,1 % повышает порог хладноломкости на 20 К (рисунок 7.1).
Рисунок 7.1 – Влияние содержания углерода на хладноломкость стали
Снижение содержания углерода предотвращает образование при сварке в зоне термического влияния хрупких закалочных мартенситных структур. В свариваемых хладостойких сталях содержание углерода должно быть ниже 0,2 %, и в структуре должно быть мало перлита (малоперлитные стали).
Введение в углеродистую
сталь до 2 % марганца и до 0,8 % кремния
упрочняет ферритную матрицу
благодаря образованию твердого
раствора замещения. Легирование марганцем
измельчает зерно и увеличивает
вязкость феррита, что повышает величину
работы распространения трещины
при низких температурах. Легирование
стали малыми добавками титана, ниобия
и ванадия позволяет получать
мелкодисперсные выделения
Для повышения хладостойкости и свариваемости строительных сталей применяют малоперлитные стали с низким содержанием углерода, микролегированные сильными карбидообразующими элементами. Кроме того, используют стали, легированные азотом в сочетании с различными сильными нитридообразующими элементами, в качестве которых чаще всего применяют ванадий, алюминий, ниобий и титан. Выделение азота из твердого раствора в виде нитридов уменьшает его охрупчивающее действие. Это увеличивает прочность стали и, способствуя измельчению зерна, не ухудшает ее хладостойкости.
К сталям этой группы относятся стали марок 09Г2, 09Г2С, 09Г2СД, 16Г2АФ, 14Г2АФ, 14Г2САФ и др. Из-за дефицитности никеля его применение в сталях этого типа ограничено. Стали типа 14Г2АФ, 16Г2АФ и их варианты 14Г2САФ, 16Г2САФ широко используются в нормализованном состоянии для изготовления газопроводных труб диаметром 1020 – 1420 мм. Их прочность oв = 560 – 600 МПа, а ударная вязкость KCU при –60°С (213 К) в случае снижения содержания серы и фосфора до 0,01 % составляет 60 Дж/см2.
Из всех легирующих элементов никель в наибольшей степени понижает хладноломкость стали. Никель и железо полностью растворимы друг в друге, имеют близкое строение кристаллических решеток. Никель не является карбидообразующим элементом, он находится в твердом растворе в феррите или аустените. Никель упрочняет феррит и одновременно увеличивает его вязкость. Никель увеличивает прокаливаемость стали, измельчает зерно, а также снижает концентрацию примесей на дислокациях и уменьшает блокирование дислокаций примесными атомами внедрения. Введение 1 % Ni снижает порог хладноломкости примерно на 20 К.
Хром несколько повышает
прочность стали и при
Сталь 09ХГ2НФБ в результате контролируемой прокатки с последующим регулируемым охлаждением в процессе прокатки на стане имеет преимущественно бейнитную структуру с небольшим количеством мелкозернистого феррита, упрочненного дисперсными частицами карбонитридных фаз V и Nb. При o0,2 > 700 МПа и oв > 900 МПа ее b5 = 20,5 %. При –60°С ударная вязкость KCU = 104 Дж/см2, а критическая температура хрупкости Т50 = –100°С. Сталь хорошо сваривается и может быть использована в сварных конструкциях ответственного назначения в строительстве и машиностроении.
Введение молибдена в
количествах до 0,5 % существенно снижает
порог хладноломкости. Молибден оказывает
сдерживающее влияние на диффузионную
подвижность фосфора и
Для магистральных трубопроводов северного исполнения в США и Канаде применяют высокопрочные свариваемые Mn – Mo – Nb стали с микроструктурой игольчатого феррита, содержащие 1,6 – 2,2 % Мn, 0,25 – 0,4 % Мо, 0,04 – 0,10 % Nb. Упрочнение выделениями Nb(C,N) происходит при ее охлаждении после прокатки и в процессе старения горячекатаной стали при температуре 575 – 650°С.
Трубы фирмы «Италсидер» такого состава со структурой игольчатого феррита при толщине стенки 20 мм имеют порог хладноломкости Т50 = –50°С при oв = 650 МПа и o0,2 = 540 МПа.
Для железнодорожных мостов северного исполнения применяют сталь 12Г2МФТ. Прокат из стали 12Г2МФТ толщиной до 40 мм характеризуется не только более высокой прочностью, но и более высокими характеристиками вязкости разрушения в широком температурном диапазоне.
Особую сложность представляет повышение хладостойкости литых сталей. Литая сталь отличается от деформированной наличием дефектов в виде раковин и трещин. Литые стали имеют крупное первичное зерно, и его измельчение представляет сложную задачу. Термическая обработка по обычным режимам полностью не устраняет структурные особенности литого металла.
Наиболее перспективным способом измельчения зерна в литых сталях, как и в деформированных, является микролегирование такими карбидообразующими элементами, как V, Ti, Nb, Zr.
Несмотря на существенные структурные различия литых сталей, наблюдается единая зависимость их параметра трещиностойкости Кс от o0,2 при различных видах разрушения: хрупком, квазихрупком и вязком (рисунок 7.2).
Рисунок 7.2 – Зависимость параметра трещиноустойчивости Кс от предела текучести o0,2 литых сталей: I – вязкое разрушение; II – вязко-хрупкое разрушение; III – хрупкое разрущение
Оптимальными для получения максимальной трещиностойкости и хладостойкости являются литые стали, имеющие предел текучести от 300 – 400 МПа, так как они обладают рациональным сечением характеристик прочности и пластичности. Стали с пределом текучести меньше 300 МПа не могут быть использованы в качестве хладостойких в связи с низкими характеристиками прочности. Стали с пределом текучести более 800 МПа обладают низкой хладостойкостью вследствие пониженной пластичности. Эти стали в условиях низких климатических температур могут быть использованы лишь в качестве износостойких.
Информация о работе Коррозия и коррозионностойкие материалы. Общие сведения