Автор: Пользователь скрыл имя, 27 Февраля 2012 в 19:55, реферат
Современная классификация витаминов не является совершенной. Она основана на физико-химических свойствах (в частности, растворимости) или на химической природе, но до сих пор сохраняются и буквенные обозначения. В зависимости от растворимости в неполярных органических растворителях или в водной среде различают жирорастворимые и водорастворимые витамины.
1. Классификация, свойства и биологическая роль витаминов
2. Липиды
3. Процесс брожения и его типы
4. Физико-химические свойства белков. Уровни организации белковых молекул
5. Способы очистки белков и определение кинетики ферментативной реакции
6. Литература
Брожение (тж. сбрамживание, фе
Брожение -- это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования, способного поддерживать генерацию АТФ в процессе гликолиза. Стандартные примеры продуктов брожения: этанол (питьевой спирт) , молочная кислота и водород, такие как масляная кислота и ацетон этанол, углекислый газ, другие продукты, а далее - молочная кислота, уксусная кислота, этилен и другие восстановленные метаболиты. Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамид аденин динуклеотид (NAD+) , который требуется для гликолиза. Это важно для нормальной клеточной деятельности, поскольку гликолиз -- единственный источник АТФ в анаэробных условиях.
Получение
АТФ брожением менее
Спиртовое брожение -- это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия.
Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).
Схематично спиртовое брожение может быть изображено уравнением
С6Н12О6 -> 2С2Н5ОН + 2С02 + 23, 5 * 104 дж
глюкоза-
этиловый спирт+углекислота+энергия. Процесс
спиртового брожения -- многоступенчатый,
состоящий из цепи химических реакций.
Превращения глюкозы до образования
пировиноградной кислоты
При спиртовом брожении пировиноградная кислота превращается в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется С02 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-H2. Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом -- соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями. Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.
Молочнокислое брожение
При молочнокислом брожении конечным продуктом является молочная кислота. Этот вид брожения осуществляется с помощью молочнокислых бактерий, которые подразделяются на две большие группы (в зависимости от характера брожения) : гомоферментативные, образующие из сахара только молочную кислоту, и гетероферментативные, образующие, кроме молочной кислоты, спирт, уксусную кислоту, углекислый газ. Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6-ю (гексозы) или 5-ю (пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен. У молочнокислых бактерий нет ферментативного аппарата для использования кислорода воздуха. Кислород для них или безразличен, или угнетает развитие.
Молочнокислое брожение может бытьописаноуравнением
С6Н12О6 -> 2СН3*CНОН*СООН+21, 8-104 дж
глюкоза
молочная кислота энергии. Глюкоза
также расщепляется до пировиноградной
кислоты. Но затем ее декарбоксилирование
(отщепление С02) , как при спиртовом
брожении, не происходит, так как
молочнокислые бактерии лишены соответствующих
ферментов. У них активны дегидрогеназы
(НАД). Поэтому пировиноградная
Гетероферментативное молочнокислое брожение вызывают бактерии рода Lactobacterium и рода Streptococcus. Гетероферментативные бактерии образуют молочную кислоту иным путем. Последняя стадия -- восстановление пировиноградной кислоты до молочной -- та же самая, что и в случае гомоферментативного брожения. Но сама пировиноградная кислота образуется при ином расщеплении глюкозы -- гексозомонофосфатном. Выход энергии гораздо меньше, чем при спиртовом брожении.
Гетероферментативные бактерии сбраживают ограниченное число веществ: некоторые гексозы (причем определенного строения) , пентозы, сахароспирты и кислоты.
Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра, затем молочнокислые бактерии сменяются пропионовокислыми.
Молочнокислые
бактерии нашли широкое применение
при консервировании плодов и
овощей, в силосовании кормов. Чистое
молочнокислое брожение применяется
для получения молочной кислоты
в промышленных масштабах. Молочная
кислота находит широкое
Маслянокислое брожение
Превращение
углеводов с образованием масляной
кислоты было известно давно. Природа
маслянокислого брожения как результат
жизнедеятельности
Маслянокислое брожение в общем виде описывается уравнением
C6H12О6->СН3*CН2*СООН+2С02+2Н2
глюкоза
масляная кислота. При этом брожении
накапливаются различные
Брожение
начинается с процесса фосфорилирования
глюкозы и далее идет по гликолитическому
пути до стадии образования пировиноградной
кислоты. Затем образуется уксусная
кислота, которая активируется ферментом.
После чего при конденсации (соединении)
из двууглеродного соединения получается
четырехуглеродная масляная кислота.
Таким образом, при маслянокислом
брожении происходит не только разложение
веществ, но и синтез. По данным В. Н.
Шапошникова, в маслянокислом брожении
различаются две фазы. В первой
параллельно с увеличением
Маслянокислое брожение происходит в природных условиях в гигантских масштабах: на дне болот, в заболоченных почвах, илах и всех тех местах, куда ограничен доступ кислорода. Благодаря деятельности маслянокислых бактерий разлагаются огромные количества органического вещества. Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов.
Итак, три основных типа брожения органически связаны между собой -- начальные пути разложения углеводов у них одинаковы. Процессы дыхания и брожения являются основными источниками энергии, необходимыми микроорганизмам для нормальной жизнедеятельности, осуществления процессов синтеза важнейших органических соединений.
4. Физико-химические свойства белков. Уровни организации белковых молекул
Полимеры. %0%от сухого вещества клетки (всегда С, Н, О2, азот, почти всегда сера).
Большая
молярная масса. Структурная единица-
Боагодаря
наличию амино- и карбоксильных
групп белкиобладают
Гидратация-связывание диполей воды с ионами и полярными группами аминокислот.
Денатурация-потеря наитивных свойств белка из за нарушения химических связей.
1. Простые белки:
-протамины и гистоны-в ядрах сперматозоидов у рыб и птиц (повышенное содержание АК, особенно аргенин)
-альбумины
- животные и растительные ткани,
-глобулины
- глобулярные белки, растворимы
в слабых растворах
-глютеины,
проламины - семена злаков, зеленые
части растений (растворяются в
разбавленных растворах
-протеноиды - белки опорных клеток, фибриллярный коллаген, кератин.
2. Сложные белки:
-хромопротеины
- содержат окрашенные
А) гемопротеины (содержатжелезо) -цитохромы, некоторые ферменты (каталаза, пероксидаза) , гемоглобин, миоглобин
Б) дыхательные пигменты крови-гемеритрины
В) флавопротеиды - переночсики электронов, важная роль в ОВ реакциях.
-гликопротеины - почти во всех тканях, в жидкостях животных. Содержат обычный набор АК с преобладанием серина и треонина.
Муцины-секреты слизистых желез
Мукоиды-входит в состав опорных тканей
Многие белки плазмы крови, групповые свойства крови, некотоые ферменты и гормоны.
-липопротеины - комплекс белков и липидов (биологическая мембрана)
-фосфопротеины
- входи фосфорная группа, присоединяется
к АК-остаткам. Обычно к ферментам
через остаток серина и
-металлопротеины
- ферментативное дыхание (в
-нуклеопротеины
- комплексы НК с белками.
Функции:
1.
каталитическая-катализируют
2.
защитная - основную функцию защиты
выполняет иммунная система,
3.
структурная-основное вещество
4.
регуляторная-многие гормоны-
5.
поддержание коллоидно-
6. гомеостаз
7. энергетическая (АТФ)
8. транспотр-гемоглобин
Уровни организации:
Первичная структура-линейная последовательность АК-остатков в полипептидной цепи.
Вторичная структура-пространственная структура, образующаяся в результате укладки полипептидной цепи определенным образом:
б-спираль -водородные связи между NH-на одном витке и СО-на другом.
в-спираль-водородные
связи между параллельными
Хотя эти связи не очень прочные, их много>прочная связь
Третичная структура-трухмерная структура, образуется за счет взаимодействия между радикалами АК, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи. Гидрофобные радикалы внутри глобулы, гидрофильные-на поверхности (определяют растворимость в воде)
Четвертичная структура-характерна для сложных белков, состоит из 2 и более полипептидных цепей, не связанных ковалентными связями, а также для белков, содержащих небелковые компоненты. Под 4 структурой понимается пространственное расположение этих компонентов.
5. Способы очистки белков и определение кинетики ферментативной реакции
Для
подробного исследования физико-химических
и биологических свойств