Автор: Пользователь скрыл имя, 20 Февраля 2012 в 09:22, контрольная работа
В некоторых явлениях случайные отклонения от закономерностей настолько малы, что их можно не учитывать. Однако есть и такие явления, в которых невозможно подметить никаких закономерностей, и случайность играет основную роль. Примером такого явления может служить движение малой частицы твердого вещества, взвешенной в жидкости, так называемое броуновское движение.
Введение ……………………….. …………………………………………….......3
1. Распределение случайных величин и функции распределения………..5
2. Характеристики случайных величин…………………………………….8
3. Нормальное распределение и центральная предельная теорема……...19
Заключение……………………………………………………………………….28
Список используемой литературы……………………………………………...29
,
где Х – случайная величина с распределением Ф(Х), причем m = M(Y), = D(Y). Нормальное распределение с параметрами сдвига m и масштаба обычно обозначается N(m, ) (иногда используется обозначение N(m, )).
Как следует из (8), плотность
вероятности нормального
Нормальные распределения
образуют масштабно-сдвиговое
Для центральных моментов
третьего и четвертого порядка
нормального распределения
Эти равенства лежат в основе классических методов проверки того, что результаты наблюдений подчиняются нормальному распределению. В настоящее время нормальность обычно рекомендуется проверять по критерию W Шапиро – Уилка. Проблема проверки нормальности обсуждается ниже.
Если случайные величины Х1 и Х2 имеют функции распределения N(m1, 1) и N(m2, 2) соответственно, то Х1 + Х2 имеет распределение Следовательно, если случайные величины X1, X2,…, Xn независимы и имеют одно и тоже распределение N(m, ), то их среднее арифметическое
имеет распределение N(m, ). Эти свойства нормального распределения постоянно используются в различных вероятностно-статистических методах принятия решений, в частности, при статистическом регулировании технологических процессов и в статистическом приемочном контроле по количественному признаку.
С помощью нормального
распределения определяются
Распределение (хи - квадрат) – распределение случайной величины
где случайные величины X1, X2,…, Xn независимы и имеют одно и тоже распределение N(0,1). При этом число слагаемых, т.е. n, называется «числом степеней свободы» распределения хи – квадрат.
Распределение t Стьюдента – это распределение случайной величины
где случайные величины U и X независимы, U имеет распределение стандартное нормальное распределение N(0,1), а X – распределение хи – квадрат с n степенями свободы. При этом n называется «числом степеней свободы» распределения Стьюдента. Это распределение было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, «ноу-хау» в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом «Стьюдент». История Госсета - Стьюдента показывает, что еще сто лет менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов принятия решений.
Распределение Фишера – это распределение случайной величины
где случайные величины Х1 и Х2 независимы и имеют распределения хи – квадрат с числом степеней свободы k1 и k2 соответственно. При этом пара (k1, k2) – пара «чисел степеней свободы» распределения Фишера, а именно, k1 – число степеней свободы числителя, а k2 – число степеней свободы знаменателя. Распределение случайной величины F названо в честь великого английского статистика Р.Фишера (1890-1962), активно использовавшего его в своих работах.
Выражения для функций распределения хи - квадрат, Стьюдента и Фишера, их плотностей и характеристик, а также таблицы можно найти в специальной литературе (см., например, [8]).
Как уже отмечалось,
нормальные распределения в
Центральная предельная теорема (для разнораспределенных слагаемых). Пусть X1, X2,…, Xn,… - независимые случайные величины с математическими ожиданиями М(X1), М(X2),…, М(Xn), … и дисперсиями D(X1), D(X2),…, D(Xn), … соответственно. Пусть
Тогда при справедливости некоторых условий, обеспечивающих малость вклада любого из слагаемых в Un,
для любого х.
Условия, о которых
идет речь, не будем здесь формулировать.
Их можно найти в специальной
литературе (см., например, [6]). «Выяснение
условий, при которых
Центральная предельная
теорема показывает, что в случае,
когда результат измерения (
Иногда считают, что
для нормальности
Заключение
Из сказанного вытекает,
что в конкретной прикладной
задаче нормальность
Список используемой литературы