Расширение понятия числа

Автор: Пользователь скрыл имя, 27 Марта 2012 в 13:30, реферат

Краткое описание

Число понимается и принимается (многими) античными мыслителями как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере и числе, соразмерного (симметричного) и гармоничного. Каким же мыслителям свойственен такой взгляд?
Среди греческих мыслителей прежде всего пифагорейцы, а вслед за ними и академики обращали особое внимание на роль числа в познании и конституировании мира: «Числу все вещи подобны», - утверждает Пифагор. Не следует, однако, понимать это утверждение так, как истолковывает его Аристотель, а именно, что все вещи состоят из числа, поскольку число допустимо лишь мыслить, но нельзя искать среди вещей.

Оглавление

Введение........................................................................................................................2
1. Число, как основное понятие математики. Натуральные числа.............................4
2. Дробные числа.............................................................................................................8
3. Десятичные дроби.....................................................................................................11
4. Отрицательные числа................................................................................................13
5. Действительные числа..............................................................................................15
6. Комплексные числа..................................................................................................17
7. Векторные числа.......................................................................................................19
8. Матричные числа......................................................................................................20
9. Трансфинитные числа...............................................................................................20
10. Развитие функциональных чисел..........................................................................21
Заключение................................................................................................................23
Список литературы...............................................................................................24

Файлы: 1 файл

расширение понятия числа-24стр..doc

— 168.50 Кб (Скачать)


                                               Содержание

 

Введение........................................................................................................................2

1. Число, как основное понятие математики. Натуральные числа.............................4

2. Дробные числа.............................................................................................................8

3. Десятичные дроби.....................................................................................................11

4. Отрицательные числа................................................................................................13

5. Действительные числа..............................................................................................15   

6.  Комплексные числа..................................................................................................17

7. Векторные числа.......................................................................................................19

8. Матричные числа......................................................................................................20

9. Трансфинитные числа...............................................................................................20

10. Развитие функциональных чисел..........................................................................21

Заключение................................................................................................................23

Список литературы...............................................................................................24

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           Введение

    Число понимается и принимается (многими) античными мыслителями как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере и числе, соразмерного (симметричного) и гармоничного. Каким же мыслителям свойственен такой взгляд?

    Среди греческих мыслителей прежде всего пифагорейцы, а вслед за ними и академики обращали особое внимание на роль числа в познании и конституировании мира: «Числу все вещи подобны», - утверждает Пифагор. Не следует, однако, понимать это утверждение так, как истолковывает его Аристотель, а именно, что все вещи состоят из числа, поскольку число допустимо лишь мыслить, но нельзя искать среди вещей. Как поясняет просвещенная Теано, «и многие эллины, как мне известно, думают, будто Пифагор говорил, что все рождается из числа. Но это учение вызывает недоумение: каким образом то, что даже не существует, мыслится порождающим? Между тем, он говорил, что все возникает не из числа, а согласно числу, так как в числе – первый порядок, по причастности которому и в счислимых вещах устанавливается нечто первое, второе и т. д.»

    Таким образом, число выступает как принцип познания и порождения, ибо позволяет нечто различать, мыслить как определенное, вносить предел в мир и мысль. Поэтому число – первое из сущего, чистое бытие, - как таковое оно есть нечто божественное: «…Природа числа, - говорит Филолай, - познавательна, предводительна и учительна для всех во всем  непонятном и неизвестном. В самом деле, никому не была бы ясна ни одна из вещей – ни в их отношении к самим себе, ни в их отношении к другому, если бы не было числа и его сущности». Число есть чистое идеальное бытие, первый образ безобразного Блага и первый прообраз всего существующего. Поэтому число – наиболее достоверное и истинное, первое во всей иерархии сущего, начало космоса.

    Число играет первенствующую роль и в так называемом неписанном, или эзотерическом, учении Платона, незафиксированном в текстах самого Платона и дошедшем до нас лишь в реконструированном виде из отдельных свидетельств его учеников и последователей. Согласно этому учению, следы которого мы находим у Аристотеля, его ближайшего ученика Теофраста и позднеантичных неоплатоников, в основе всего лежит единица – начало тождественности, принцип формы и неопределенная двоица – принцип инаковости, или материи, которыми и порождается вся иерархия сущего – эйдосы и числа, души и геометрические объекты, физические тела. Принцип числа оказывается тем основанием, на котором покоится (более позднее) античное миросозерцание с его обостренным переживанием бытия, присутствующего в космосе, но не смешанного с ним.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1. Число, как основное понятие математики. Натуральные числа.

    Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь. Во всех разделах современной математики приходится рассматривать разные величины и пользоваться числами.

    Считается, что термин «натуральное число» впервые применил римский государственный деятель, философ, автор трудов по математике и теории музыки Боэций (480 – 524 гг.), но еще греческий математик Никомах из Геразы говорил о натуральном, то есть природном ряде чисел.

    Понятием «натуральное число» в современном его понимании последовательно пользовался выдающийся французский математик, философ-просветитель Даламбер (1717-1783 гг.).

    Первоначальные представления о числе появились в эпоху каменного века, при переходе от простого собирания пищи к ее активному производству, примерно 100 веков до н. э. Числовые термины тяжело зарождались и медленно входили в употребление. Древнему человеку было далеко до абстрактного мышления, хватило того, что он придумал числа: «один» и «два». Остальные количества для него оставались неопределенными и объединялись в понятии «много».

Росло производство пищи, добавлялись объекты, которые требовалось учитывать в повседневной жизни, в связи с чем придумывались новые числа: «три», «четыре»… Долгое время пределом познания было число «семь».

    О непонятном говорили, что эта книжка «за семью печатями», знахарки в сказках давали больному «семь узелков с лекарственными травами, которые надо было настоять на семи водах в течение семи дней и принимать каждодневно по семь ложек».

    Познаваемый мир усложнялся, требовались новые числа. Так дошли до нового предела. Им стало число 40. Запредельные количества моделировались громадным по тем временам числом «сорок сороков», равным 1600.

    Позднее, когда число «сорок» уже перестало быть граничным, оно стало играть большую роль в русской метрологии как основа системы мер: пуд имел 40 фунтов, бочка-сороковка – сорок ведер и т.д.

    Большой интерес вызывает история числа «шестьдесят», которое часто фигурирует в вавилонских, персидских и греческих легендах как синоним большого числа. Вавилоняне считали его Божьим числом: шестьдесят локтей в высоту имел золотой идол из храма вавилонского царя Навуходоносора. Позже с тем же самым значением (неисчислимое множество) возникли числа, кратные 60: 300, 360. Со временем число 60 в Вавилоне легло в основу шестидесятеричной системы исчисления, следы которой сохранились до наших дней при измерении времени и углов.

    Следующим пределом у славянского народа было число «тьма», (у древних греков – мириада), равное 10 000, а запределом – «тьма тьмущая», равное 100 миллионам. У славян применяли также и иную систему исчисления (так называемое «большое число» или «большой счет»). В этой системе «тьма» равнялась 106, «легион» – 1012, «леодр» – 1024, «ворон» – 1048, «колода» – 1096, после чего добавляли, что большего числа не существует.

     В Античном мире дальше всех продвинулись Архимед (III в. до н.э.) в «исчислении песчинок» - до числа 10, возведенного в степень 8х1016 , и Зенон Элейский (IV в. до н. э.) в своих парадоксах – до бесконечности ∞.

    Функции натуральных чисел.

    Натуральные числа имеют две основные функции:

- характеристика количества предметов;

- характеристика порядка предметов, размещенных в ряд.

    В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.).

Долго и трудно человечество добиралось до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности:1, 2, … ∞. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещи…

    Простые Числа Мерсенна, совершенные числа.

    Среди простых чисел особую роль играют простые числа Мерсенна - числа вида 1)Мр = 2р -1 , где р - простое число. Они называются простыми числами Мерсенна по имени французского монаха Мерена Мерсенна (1588-1648), одного из основателей Парижской Академии наук, друга Декарта и Ферма. Так как М2=3, М3=7, М5=31, М7=127, то это - простые числа Мерсенна. Однако, число     2)М11=2047=23 . 89     простым не является. До 1750 года было найдено всего 8 простых чисел Мерсенна: М2, М3, М5, М7, М13, М17, М19, М31. То, что М31 - простое число, доказал в 1750 году Л. Эйлер. В 1876 году французский математик Эдуард Люка установил, что число

3)М127=170141183460469231731687303715884105727

- простое. В 1883 г. Сельский священник Пермской губернии И.М.Первушин без всяких вычислительных приборов доказал, что число М61=2305843009213693951    является простым. Позднее было установлено, что числа М89 и М107 - простые. Использование ЭВМ позволило в 1952-1964 годах доказать, что числа М521, М607, М1279, М2203, М2281, М3217, М4253, М4423, М2689, М9941, М11213 - простые. К настоящему времени известно уже более 30 простых чисел Мерсенна, одно из которых М216091 имеет 65050 цифр. Большой интерес к простым числам Мерсенна вызван их тесной связью с совершенными числами.

    Натуральное число Р называется совершенным, если оно равно сумме всех своих делителей кроме Р.

    Евклид доказал, что если р и 2р-1 - простые числа, то число 4) Рр=2р-1(2р-1) =2р-1Мр   является совершенным.

    Действительно, делителями такого числа, включая само это число, являются  5) 1,2, ... ,2р-1,Мр,2Мр, ... ,2р-1Мр .

    Их сумма Sp=(1+2+ ... +2р-1)(Мр+1)=(2р-1) . 2р=2 . 2р-1 Мр. Вычитая из S само число Рр , убеждаемся, что сумма всех делителей числа Рр равна этому числу, следовательно Рр - совершенное число.

    Числа Р2=6 и Р3=28 были известны ещё пифагорейцам. Числа Р5=496 и Р7=8128 нашел Евклид. Используя другие простые числа Мерсенна и формулу 4, находим следующие совершенные числа:

6) Р13=33550336, Р17=8589869056, Р19=137438691328, Р31=2305843008139952128.

    Для всех остальных чисел Мерсенна числа Рр имеют очень много цифр.

    До сих пор остаётся загадкой, как Мерсенн смог высказать правильное утверждение, что числа Р17, Р19, Р31 являются совершенными. Позднее было обнаружено, что почти за сто лет до Мерсенна числа Р17, Р19 нашел итальянский математик Катальди - профессор университетов Флоренции и Болоньи. Считалось, что божественное провидение предсказало своим избранникам правильные значения этих совершенных чисел. Если учесть, что ещё пифагорейцы считали первое совершенное число 6 символом души, что второе совершенное число 28 соответствовало числу членов многих учёных обществ, что даже в двенадцатом веке церковь учила: для спасения души достаточно изучать совершенные числа и тому, кто найдёт новое божественное совершенное число, уготовано вечное блаженство, то становится понятным исключительный интерес к этим числам.

    Однако и с математической точки зрения чётные совершенные числа по-своему уникальны. Все они - треугольные. Сумма величин, обратных всем дилителям числа, включая само число, всегда равна двум. Остаток от деления совершенного числа, кроме 6, на 9 равен 1. В двоичной системе совершенное число Рр  начинается р единицами, потом следуют р-1 нулей. Например:

7) Р2=110, Р3=11100, Р5 =111110000, Р7 =1111111000000 и т.д.

    Последняя цифра чётного совершенного числа или 6, или 8, причём, если 8, то ей предшествует 2.

    Леонард Эйлер доказал, что все чётные совершенные числа имеют вид 2р-1 . Мр, где Мр-простое число Мерсенна. Однако до сих пор не найдено ни одного нечётного совершенного числа. Высказано предположение(Брайен Такхерман,США), что если такое число существует, то оно должно иметь не менее 36 знаков.

   

    2. Дробные числа.

    О происхождении дробей

    С возникновением представлений о целых числах возникали представления и о частях единицы, точнее, о частях целого конкретного предмета. С появлением натурального числа n возникло представление о дроби вида 1/n, которая называется сейчас аликвотной, родовой или основной.

    Чтобы выяснить вопрос о происхождении дроби, надо остановиться не на счете, а на другом процессе, который возник со стародавних времен, - на измерении. Исторически дроби возникли в процессе измерения.

    В основе любого измерения всегда лежит какая-то величина (длина, объем, вес и т.д.). Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.

Так возникали первые конкретные дроби как определенные части каких-то определенных мер. Только гораздо позже названиями этих конкретных дробей начали обозначать такие же самые части других величин, а потом и абстрактные дроби.

    Дроби в Древнем Египте.

    Первая дробь, с которой познакомились люди, была, наверное, половина. За ней последовали 1/4, 1/8 …, затем 1/3 , 1/6  и т.д., то есть самые простые дроби, доли целого, называемые единичными или основными дробями. У них числитель всегда единица. Некоторые народы древности и, в первую очередь, египтяне выражали любую дробь в виде суммы только основных дробей. Лишь значительно позже у греков, затем у индийцев и других народов стали входить в употребление и дроби общего вида, называемые обыкновенными, у которых числитель и знаменатель могут быть любыми натуральными числами.

    В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.

Информация о работе Расширение понятия числа