Численное решение дифференциальных уравнений

Автор: Пользователь скрыл имя, 05 Июня 2013 в 06:58, курсовая работа

Краткое описание

1.Решить задачу Коши методом Эйлера-Коши. Дифференциальное уравнение, начальное условие , интервал [2,2.7] и шаг h=0.1. 2.Оценить погрешность вычислений при решении задачи Коши. 3. Построить график решения дифференциального уравнения. 4. По узлам с чётными номерами таблицы построить интерполяционный многочлен Лагранжа, с помощью которого сгустить таблицу в пять раз, то есть увеличить количество расчетных значений таблицы в пять раз. 5. Рассчитать погрешность интерполирования. 6.Построить графики решения дифференциального уравнения и интерполяционного многочлена в одних осях. 7.Аппроксимировать решение дифференциального уравнения методов наименьших квадратов. 8.Рассчитать погрешность аппроксимации.

Оглавление

Индивидуальное задание. 3
1.Решение дифференциального уравнения методом Эйлера-Коши. 4
1.1.Краткая теория. 4
1.2. Пример расчета решаемой задачи. 5
2.Интерполяционный многочлен Лагранжа. 8
2.1.Краткая теория. 8
2.2.Пример расчета решаемой задачи. 9
3. Метод наименьших квадратов. 13
3.1.Краткая теория. 13
3.2.Пример расчета решаемой задачи. 14
4.Анализ результатов. 18
Заключение. 19
Приложение А 20
Приложение Б 21
Приложение В. 23
Список используемой литературы. 24

Файлы: 1 файл

численые методы. курсовая.doc

— 489.50 Кб (Скачать)

 

 

 

График интерполяционного многочлена Лагранжа и решение дифференциального уравнения.

 

3. Метод наименьших  квадратов.

3.1.Краткая теория.

Этот метод - один из краеугольных камней инженерного  образования. Используется при оптимизации, поиске наилучших аппроксимаций  в различных приложениях, лежит в основе методов статистического анализа.

Использование интерполяции для построения функциональных зависимостей не всегда целесообразно, так как совпадение значений полученных формулой с табличными значениями в  узлах интерполяции, как мы видели выше, не гарантирует близости указанного значения в других точках, отличных от узлов.

Задача о  построении эмпирической формулы состоит  в следующем.

Пусть результаты измерения (наблюдения) представлены таблицей 

 

X

X1

X2

X3

Xk

Xk+1

Xn

Y

Y1

Y2

Y3

Yk

Yk+1

Yn


 

 

и наблюдения Y связаны со значениями фактора X искомой эмпирической зависимостью Y = j(x,А01,…,Аm), где А01,…,Аm - некоторые неизвестные параметры. Разности j(Xk,А01,…,Аm) - Yk = ek,  где Uk – наблюдения, отвечающие значениям фактора X = Xk, называют невязками, отклонениями или погрешностями.

Требуется так  подобрать неизвестные параметры  функции            j(x,А01,…,А ) , чтобы уклонение ek оказалось наименьшим (в каком-то) смысле.

Рассмотрим  применение метода наименьших квадратов на примере приближающей функции с двумя параметрами вида:

F(x, a, b, с)= ax2+bx+c

Функция данного  вида  называется квадратичной, поэтому  рассматриваемая задача по-другому называется квадратичным аппроксимированием.

Чтоб произвести квадратичное аппроксимирование нужно найти параметры a, b, c.

Для этого нужно  составить систему из трех линейных уравнений:

          a11a + a12b + a13c = b1      

       a21a + a22b + a23c = b2      

       a31a + a32b + a33c = b3  

где   a11 = , a12 = a21 =   , a13 = a22 = a31 = ,

a23 = a32 = , a33  = n + 1,

b1 = , b2 = , b3 = .

Далее находим  квадратичную функцию F(x)= ax2+bx+c, которая и является решением дифференциального уравнения.

3.2.Пример расчета решаемой задачи.

По заданным значениям в таблице 5 произведем аппроксимацию квадратичной функции

 

 

i

xi

yi

0

2

2,5

1

2,1

2,472452

2

2,2

2,451842

3

2,3

2,438425

4

2,4

2,432407

5

2,5

2,433924

6

2,6

2,443035

7

2,7

2,459711


Таблица 5

Произведем  расчет коэффициентов:

i

x4

x3

x2

x

yi*x2

yi*xi

yi

0

16

8

4

2

10

5

2,5

1

19,4481

9,261

4,41

2,1

10,90351

5,19215

2,472452299

2

23,4256

10,648

4,84

2,2

11,86691

5,394051

2,451841552

3

27,9841

12,167

5,29

2,3

12,89927

5,608378

2,438425235

4

33,1776

13,824

5,76

2,4

14,01066

5,837776

2,43240677

5

39,0625

15,625

6,25

2,5

15,21202

6,084809

2,433923528

6

45,6976

17,576

6,76

2,6

16,51492

6,351891

2,443034837

7

53,1441

19,683

7,29

2,7

17,93129

6,64122

2,459710957

257,9396

106,784

44,6

18,8

109,3386

46,11027

19,63179518

a33

a11

a21=a12

a13=a31=a22

a23=a32

b1

b2

b3


 

Теперь составим систему линейных уравнений и  найдем параметры a, b, c.

Решим систему  линейных уравнений методом Гаусса в MS Excel.

 

 

 

 

 

257,9396

106,784

44,6

109,3386

106,784

44,6

18,8

46,11027

44,6

18,8

8

19,6318

       

первое преобразование

1

0,413988

0,172909

0,423892

0

-0,39266

-0,33612

-0,84537

0

-0,33612

-0,28827

-0,7262

       

второе преобразование

1

0,413988

0,172909

0,423892

0

1

0,855994

2,152904

0

0

0,000557

0,002573

       

c=

4,615976

   

b=

-1,79834

   

a=

0,370243

   

Квадратичная  функция принимает вид:

F(x)=

Аппроксимация функции приведена в таблице 6:

yi

f(x)

2,5

2,500262

2,472452299

2,472227

2,451841552

2,451597

2,438425235

2,438372

2,43240677

2,432552

2,433923528

2,434137

2,443034837

2,443127

2,459710957

2,459521


Таблица 6.

Погрешность аппроксимации квадратичной функции находится по формуле: (Таблица 7)

 

 

 

 

 

yi

f(x)

(F(xi)-yi)2

2,5

2,500262

6,84095E-08

2,472452299

2,472227

5,07944E-08

2,451841552

2,451597

5,97286E-08

2,438425235

2,438372

2,80674E-09

2,43240677

2,432552

2,11553E-08

2,433923528

2,434137

4,55894E-08

2,443034837

2,443127

8,44534E-09

2,459710957

2,459521

3,59736E-08

 

δ=

0,000191345


Таблица 7

 Графики  решения дифференциального уравнения,  интерполяционного многочлена и  аппроксимирующей функции.

 

 

 

 

 

 

 

4.Анализ результатов.

Для проведения анализа результатов решения  дифференциального уравнения различными численными методами построим графики  полученных результатов.

Из графиков видно, что отклонения  при вычислении дифференциального уравнения между  методами незначительные.

Все рассматриваемые  методы численного решения дифференциального  уравнения обладают вторым порядком точности, поэтому нельзя судить о  том, какой метод является более  точным.

 

 

 

 

 

 

 

Заключение.

В данной работе были исследованы численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.

Здесь применялись  следующие методы:

  1. Метод Эйлера-Коши.
  2. Интерполирование с построением интерполяционного многочлена Лагранжа.
  3. Аппроксимирование линейной функцией.

А также при  построении аппроксимирующей функции был использован метод Гаусса для решения систем линейных уравнений.

Для каждого  метода проводилась оценка погрешностей.

Таким образом, цели поставленные перед выполнением  данной работы достигнуты.

 

 

 

 

 

 

 

 

Приложение А

 

Вычисления с помощью пакета ПП MS Excel

i

xi

yi(h)

y*

e(xi)

yi(h/2)

0

2

2,5

 

=(C2-F2)/3

=J2

1

2,1

=C2+0,1/2*(SIN(C2)-SIN(B2)+SIN(D3)-SIN(B3))

=C2+0,1*(SIN(C2)-SIN(B2))

=(C3-F3)/3

=J4

2

2,2

=C3+0,1/2*(SIN(C3)-SIN(B3)+SIN(D4)-SIN(B4))

=C3+0,1*(SIN(C3)-SIN(B3))

=(C4-F4)/3

=J6

3

2,3

=C4+0,1/2*(SIN(C4)-SIN(B4)+SIN(D5)-SIN(B5))

=C4+0,1*(SIN(C4)-SIN(B4))

=(C5-F5)/3

=J8

4

2,4

=C5+0,1/2*(SIN(C5)-SIN(B5)+SIN(D6)-SIN(B6))

=C5+0,1*(SIN(C5)-SIN(B5))

=(C6-F6)/3

=J10

5

2,5

=C6+0,1/2*(SIN(C6)-SIN(B6)+SIN(D7)-SIN(B7))

=C6+0,1*(SIN(C6)-SIN(B6))

=(C7-F7)/3

=J12

6

2,6

=C7+0,1/2*(SIN(C7)-SIN(B7)+SIN(D8)-SIN(B8))

=C7+0,1*(SIN(C7)-SIN(B7))

=(C8-F8)/3

=J14

7

2,7

=C8+0,1/2*(SIN(C8)-SIN(B8)+SIN(D9)-SIN(B9))

=C8+0,1*(SIN(C8)-SIN(B8))

=(C9-F9)/3

=J16




Метод Эйлера-Коши

 

 

 

 

 

 

Приложение Б

Интерполяционный  многочлен Лагранжа

i

xi

Ln

yi

e(xi)

0

2

=C2

2,5

=ABS(D12-C12)

2

2,04

2,48816687030376

2,44419583469917

=ABS(D13-C13)

4

2,08

2,4774159438205

2,39967973982707

=ABS(D14-C14)

6

2,12

2,46776626902235

2,36489509404527

=ABS(D15-C15)

8

2,16

2,45923585233117

2,33862934393163

=ABS(D16-C16)

10

2,2

=C4

2,31992294216658

=ABS(D17-C17)

12

2,24

2,4455989642674

2,30800120796964

=ABS(D18-C18)

14

2,28

2,44052230569116

2,30222336220815

=ABS(D19-C19)

16

2,32

2,43662428935133

2,30204442792649

=ABS(D20-C20)

18

2,36

2,43391600038327

2,30698687563423

=ABS(D21-C21)

20

2,4

=C6

2,31661977981935

=ABS(D22-C22)

22

2,44

2,43210405095035

2,33054387637032

=ABS(D23-C23)

24

2,48

2,4330132940949

2,34838132706179

=ABS(D24-C24)

26

2,52

2,43513783064549

2,36976926167147

=ABS(D25-C25)

28

2,56

2,43847875867334

2,39435632763484

=ABS(D26-C26)

30

2,6

=C8

2,42180157043347

=ABS(D27-C27)

32

2,64

2,44880238915457

2,45177502666154

=ABS(D28-C28)

34

2,68

2,45577521395128

2,48395945994208

=ABS(D29-C29)

Информация о работе Численное решение дифференциальных уравнений