Понятие доказательства

Автор: Пользователь скрыл имя, 03 Ноября 2012 в 08:48, реферат

Краткое описание

Введение
Познание отдельных предметов, их свойств происходит посредством форм чувственного познания (ощущений и восприятий). Мы видим, что этот дом ещё не достроен, ощущаем вкус горького лекарства и так далее. Эти истины не подлежат особому доказательству, они очевидны.
Во многих случаях, например на лекции, в сочинении, в научной работе, в докладе, в ходе полемики, в судебных заседаниях, на защите диссертации и во многих других, приходится доказывать, обосновывать высказанные суждения.
Доказательность - важное качество правильного мышления.
Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных убеждения. В науке ученым приходится доказывать самые разные суждения, например суждение о том, что существовало до нашей эры, к какому периоду относятся предметы, обнаруживаемые при археологических раскопках, об атмосфере планет Солнечной системы, о звездах и галактиках Вселенной, о теоремах математики, о направлении развития ЭВМ, об осуществлении долгосрочных прогнозов погоды, о тайнах Мирового океана и космоса. Все эти суждения должны быть научно обоснованы.

Оглавление

Введение
1. Понятие доказательства
2. Структура доказательства
3. Прямое и косвенное доказательство
4. Правила доказательства и ошибки при их нарушении
Заключение
Список литературы

Файлы: 1 файл

понятие доказательства.docx

— 42.11 Кб (Скачать)

Софизмы древних нередко  использовались с намерением ввести в заблуждение. Но они имели и  другую, гораздо более интересную сторону. Очень часто софизмы  ставят в неявной форме проблему доказательства. Сформулированные в  тот период, когда науки логики еще не было, древние софизмы прямо  ставили вопрос о необходимости  ее построения. Именно с софизмов началось осмысление и изучение доказательства и опровержения. И в этом плане  софизмы непосредственно содействовали  возникновению особой науки о  правильном, доказательном мышлении.

Математические софизмы  собраны в целом ряде книг. Так, С. Коваль описывает математические софизмы: “каждая окружность имеет  два центра”; “каждый треугольник - равнобедренный”.

Я.И. Перельман приводит “алгебраические  комедии”: 2x2=5; 2=3.

Софизмы использовались и  теперь продолжают использоваться для  тонкого, завуалированного обмана. В  этом случае они выступают в роли особого приема интеллектуального  мошенничества, попытки выдать ложь за истину и тем самым ввести в  заблуждение.

Например, 2x2=5. Требуется  найти ошибку в следующих рассуждениях. Имеем числовое тождество: 4:4=5:5. Вынесем  за скобку в каждой части этого  тождества общий множитель. Получим -- 4(1:1)=5(1:1). Числа в скобках равны. Поэтому 4=5, или 2x2=5. [1] Но если записать выражение через дробь, то все  встанет на свои места.

Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения, иными словами, доказывающее как это суждение, так и его отрицание.

Парадоксальны в широком  смысле афоризмы, подобные таким: “Люди  жестоки, но человек добр” или “Признайте, что все равны, - и тут же появятся великие”, и вообще любые мнения и суждения, отклоняющиеся от традиции и противостоящие общеизвестному, “ортодоксальному”.

Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс “Лжец”. Имеются различные варианты этого  парадокса, многие из которых только по видимости парадоксальны.

В простейшем варианте “Лжеца”  человек произносит всего одну фразу: “Я лгу”. Или говорит: “Высказывание, которое я сейчас произношу, является ложным”. Традиционная лаконичная формулировка этого парадокса гласит: если лгущий говорит, что он лжет, то он одновременно лжет и говорит правду.

В древности “Лжец” рассматривался как хороший пример двусмысленного выражения. В средние века “Лжец” был отнесен к “неразрешимым  предложениям”. Теперь он нередко именуется  “королем логических парадоксов”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Доказательное рассуждение, логическая форма его построения и способы выведения тезиса из подобранных аргументов характеризуют  весь процесс обоснованной оценки тезиса в качестве истинного или ложного  суждения. В этом заключается внутренний смысл логической операции доказательства, его специальной наиболее активной части, получившей наименование демонстрация. Приемы демонстрации являются результатом  длительного развития умственной деятельности человека, продуктом ряда исторических эпох и многих поколений людей. В  этих приемах и способах ярко раскрывается целенаправленность доказательства, его  теоретическое и практическое значение.

 

 

 

 

 

 

 

 

 

 

 

Список литературы

1. Гетманова А.Д. Учебник по логике - М.: Владос, 1994

2. Бочаров В.А. Основы  логики: Учебник/ Бочаров В.А., Маркин  В.И. - М., 1998.

3. Поварнин С.И. Искусство  спора. - М., 1995.

4. Иванов Е.А. Логика. - М. 1996.

5. Ерышев А.А. Лукашевич  Н.П. Логика. - К.: МАУП, 1999

6. Арно А., Николь П. Логика, или Искусство мыслить. - М, Наука, 1981.


Информация о работе Понятие доказательства