Проблема создания искусственного интеллекта

Автор: Пользователь скрыл имя, 04 Ноября 2014 в 12:44, реферат

Краткое описание

В качестве самостоятельного научного направления искусственный интеллект (ИИ) существует уже более четверти века. Мнение общества, относительно специалистов данной области, постепенно менялось от скепсиса до уважения, и понимания перспектив данной области в будущем. В передовых странах, таких как США и Япония, работы в области интеллектуальных систем поддерживаются на всех уровнях - от рядовых граждан, до правительственных органов. Существует вполне обоснованное мнение, что именно исследования в области ИИ будут определять характер нынешнего информационного общества, которое уже фактически пришло на смену индустриальной эпохи, достигшей своей высшей точки расцвета в прошлом веке.

Оглавление

Вступление
1. Базовые положения
2. Методики и подходы построения систем ИИ
3. Проблемы создания ИИ
4. Реализация систем ИИ
Заключение
Список использованных источников

Файлы: 1 файл

РЕФЕРАТ.doc

— 116.50 Кб (Скачать)

В последнее время при анализе проблем, связанных с ИИ, часто применяют математический аппарат нечётких множеств, идея и реализация которого принадлежит американскому математику Л.Заде. Суть подхода состоит в отказе от принципа детерминизма. Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечёткой информации. Построение моделей, приближенных е рассуждениям человека, и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки. Смещение центра исследований нечётких систем в сторону практических приложений привело к выявлению целого ряда проблем, таких, как новые архитектуры компьютеров для нечётких вычислений, элементная база нечётких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчёта и разработки нечётких систем управления и многое другое. Математическая теория нечётких множеств, предложенная Л.Заде около тридцати лет назад, позволяет описывать нечёткие понятия и знания, оперировать этими знаниями и делать нечёткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. Нечёткое управление является одной из самых активных и результативных областей исследований применения теории нечётких множеств. Нечёткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются неточно или неопределенно. Экспериментально показано, что нечёткое управление дает лучшие результаты, по сравнению с получаемыми, при общепринятых алгоритмах управления. Нечеткая логика, на которой основано нечеткое управление, ближе к человеческому мышлению и естественным языкам, чем традиционные логические системы.

4. Реализация систем ИИ

Ещё в далёком 1954 году американский исследователь А.Ньюэлл решил написать программу для игры в шахматы. Идеей он поделился с аналитиками корпорации RAND Corporation, и которые предложили Ньюэллу свою помощь. В качестве теоретической основы программы было решено использовать метод, предложенный К. Шенноном, основателем теории информации. Точная формализация метода была выполнена А. Тьюрингом. Он же и смоделировал его вручную. К работе была привлечена группа голландских психологов под руководством А. Де Гроота, изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 -первый символьный язык обработки списков. Вскоре была написана первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Это была программа «Логик-Теоретик» (1956 г.), предназначенная для автоматического доказательства теорем в исчислении высказываний. Собственно программа для игры в шахматы, NSS, была завершена в 1957 г. В основе её лежали так называемые эвристики - правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований - и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей.

В 1956 году в США собрались основатели кибернетики с целью обсудить возможности реализации проекта «Искусственный интеллект», как они его тогда назвали. В числе участников конференции были Д. Маккарти, М. Минский, К. Шеннон, А. Тьюринг и др. К ИИ первоначально просто отнесли свойства машин брать на себя отдельные функции человека, например, такие как перевод с одного языка на другой, распознавание объектов, принятие оптимальных решений и пр. В СССР направление «Искусственный интеллект» (ИИ) возникло с опозданием на целых 10 лет и пришло на смену кибернетическому и бионическому буму первой половины 60-х годов. Поначалу оптимистам казалось, что произойдет революция и машина начнет думать как человек. Ничего подобного не произошло. Стало ясно, что никакого мышления, аналогичного человеческому, сходу построить не получится. Поэтому акценты сместились в сторону создания искусственного интеллекта - т.е. машинным решением «трудных» задач, которые человек решает, а машина пока нет. Таким образом, первоначально ИИ не претендовал на прямое моделирование мышления, а был просто решением с помощью машины трудноформализуемых «человеческих» задач.

С самого начала предполагалось, что эти решения позволят сформулировать обобщения и выработать специфические методы ИИ, ведущие, в конечном счете, к машинному мышлению. Представители возникшего направления справедливо полагали, что к конструктивному определению и моделированию мышления полезно идти от специфики задач к методам их решения, вводя «интеллект» как механизм, необходимый для решения.

В конечном итоге оказалось, что к традиционным задачам ИИ стали относить довольно много задач. Например, это понимание машиной естественного языка, т.е. вопрос-ответные системы и доступ к базам данных на естественном языке, перевод с одного языка на другой, анализ изображений объёмных (3-d) сцен, доказательство теорем, игры, базы данных, базы знаний и др.

Теперь вкратце рассмотрим наиболее активно развиваемые подходы и области применения ИИ - в порядке убывания их популярности. Надо отметить, что меньшая популярность нередко связана не столько с потенциалом технологии, сколько с отдаленностью перспектив её прикладной реализации (например, крайне высокий потенциал киберзаводов пока не вызывает серьезного интереса из-за наличия множества нерешенных задач по их управлению).

Нейронные сети

Это направление стабильно держится на первом месте. Продолжается совершенствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейронных сетей - финансовое прогнозирование, раскопка данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идёт усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах.

Эволюционные вычисления

На развитие сферы эволюционных вычислений (ЭВ) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают практические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удаётся применять научные достижения из области цифровых автоматов. Другой аспект ЭВ - использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алгоритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития - выработка стандартов, открытых архитектур, интеллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей. Модели автономного поведения предполагается активно внедрять во всевозможные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п. Отдельно стоит отметить социальные аспекты - неизвестно как общество будет на практике относиться к таким сообществам интеллектуальных программ.

Нечеткая логика

Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах.

Обработка изображений

Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений. Дальнейшие развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов.

Экспертные системы

Спрос на экспертные системы (ЭС) остаётся на достаточно высоком уровне. Наибольшее внимание сегодня уделяется системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и моделирования знаний, системам динамического планирования.

Интеллектуальные приложения

Рост числа интеллектуальных приложений, способных быстро находить оптимальные решения комбинаторных проблем (возникающих, например, в транспортных задачах), связан с производственным и промышленным ростом в развитых странах.

Распределенные вычисления

Распространение компьютерных сетей и создание высокопроизводительных кластеров вызвали интерес к вопросам распределенных вычислений - балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновления, выявлению несоответствий между объектами сети, диагностированию корректной работы программ, моделированию подобных систем.

Операционные системы реального времени

Появление автономных робототехнических устройств повышает требования к операционным системам реального времени (ОС РВ) - организации процессов самонастройки, планирования обслуживающих операций, использования средств ИИ для принятия решений в условиях дефицита времени.

Интеллектуальная инженерия

Особую заинтересованность в ИИ проявляют в последние годы компании, занимающиеся организацией процессов разработки крупных программных систем (программной инженерией). Методы ИИ все чаще используются для анализа исходных текстов и понимания их смысла, управления требованиями, выработкой спецификаций, проектирования, кодогенерации, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения задач на параллельных системах. Программная инженерия постепенно превращается в так называемую интеллектуальную инженерию, рассматривающую более общие проблемы представления и обработки знаний (пока основные усилия в интеллектуальной инженерии сосредоточены на способах превращения информации в знания).

Самоорганизующиеся СУБД

Самоорганизующиеся СУБД будут способны гибко подстраиваться под профиль конкретной задачи и не потребуют администрирования.

Автоматический анализ естественных языков

Автоматический анализ естественных языков (лексический, морфологический, терминологический, выявление незнакомых слов, распознавание национальных языков, перевод, коррекция ошибок, эффективное использование словарей).

Высокопроизводительный OLAP-анализ

Высокопроизводительный OLAP-анализ и раскопка данных, способы визуального задания запросов.

Интеллектуальные медицинские системы

Медицинские системы, консультирующие врачей в экстренных ситуациях, роботы-манипуляторы для выполнения точных действий в ходе хирургических операций.

Киберзаводы

Создание полностью автоматизированных киберзаводов, гибкие экономные производства, быстрое прототипирование, планирование работ, синхронизация цепочек снабжения, авторизации финансовых транзакций путем анализа профилей пользователей.

Прикладные методы

Небольшое число конференций посвящено выработке прикладных методов, направленных на решение конкретных задач промышленности в области финансов, медицины и математики.

Игры

Традиционно высок интерес к ИИ в среде разработчиков игр и развлекательных программ (это отдельная тема). Среди новых направлений их исследований - моделирование социального поведения, общения, человеческих эмоций, творчества.

 

Заключение

Однозначного ответа, что же такое «искусственный интеллект» на данный момент не существует. Каждый автор имеет своё мнение на этот счёт. Некоторые считают, что ИИ может быть создан на основе одной из методик перечисленных выше, другие считают, что создание ИИ невозможно именно на текущем этапе развития человечества, третьи - вообще в принципе отрицают возможность создания ИИ.

Особенность ИИ в том, что это не сложная и дорогая технология, вроде атомной энергии. Это программный продукт, который легко тиражировать (копировать). Если учить ИИ тому, что человечество считаем полезным, то затем, теоретически, ИИ сможет развиваться по экспоненте, потому что для каждого нового поколения ИИ не требуется тратить время на изучение того, что уже знают предыдущие поколения (старые версии ИИ).

Но, если позволить «разумной» машине принимать самостоятельные решения, то невозможно знать заранее, что это будут за решения, и нет уверенности, что эти решения устроят человека. Поэтому машина, снова таки теоретически, сможет осуществить свою волю в соответствии со «своими» суждениями, даже если вы этого не желаете.

Ну а что будет на самом деле - покажет будущее.

 

Список использованных источников

1. М. Тим Джонс. «Программирование  искусственного интеллекта в  приложениях» - М.: ДМК Пресс, 2004 - 312 с.: ил.

2. Лекторский В.А. «Теория познания (гносеология, эпистемология)» - «Вопросы философии», 1999, №8

3. Лефевр В.А. «От психофизики  к моделированию души.» - «Вопросы  философии», 1990, №7, с. 25-31.

4. Карл, Левитин, Поспелов, Хорошевский. «Будущее искусственного интеллекта.» - М.: Наука, 1991.

5. Сотник С. Л., «Основы проектирования  систем искусственного интеллекта» -1998.

6. Шамис А.Л. «Поведение, восприятие, мышление: проблемы создания искусственного  интеллекта». - Серия «Науки об  искусственном» - 2005.

7. Мамардашвили М.К. «Сознание как философская проблема» - «Вопросы философии», 1990, №10

8. Шалютин С.М. «Искусственный интеллект: гносеологический аспект» - М.: Мысль, 1985.

9. Бобровский С. «Перспективы и  тенденции развития систем искусственного  интеллекта» - PC Week/RE №32, 2001 г., стр. 32.

 

стр.  


Информация о работе Проблема создания искусственного интеллекта