Автор: Пользователь скрыл имя, 04 Ноября 2014 в 12:44, реферат
В качестве самостоятельного научного направления искусственный интеллект (ИИ) существует уже более четверти века. Мнение общества, относительно специалистов данной области, постепенно менялось от скепсиса до уважения, и понимания перспектив данной области в будущем. В передовых странах, таких как США и Япония, работы в области интеллектуальных систем поддерживаются на всех уровнях - от рядовых граждан, до правительственных органов. Существует вполне обоснованное мнение, что именно исследования в области ИИ будут определять характер нынешнего информационного общества, которое уже фактически пришло на смену индустриальной эпохи, достигшей своей высшей точки расцвета в прошлом веке.
Вступление
1. Базовые положения
2. Методики и подходы построения систем ИИ
3. Проблемы создания ИИ
4. Реализация систем ИИ
Заключение
Список использованных источников
Отдельно стоит отметить, что на практике четкой границы между разными подходами нет. Часто встречаются смешанные системы ИИ, где часть работы выполняется по одной методике, а часть - по другой.
3. Проблемы создания ИИ
Анализ проблемы искусственного интеллекта открывает роль таких философских познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Всё это обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, но выявляется в знании, в его языковом выражении. Орудия познания, формирующиеся, в конечном счёте на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от её конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления (т. е. в конечном счёте, формирующую адекватные схемы внешних действий в существенно меняющихся средах) необходимо наделить такую систему этими орудиями. Развитие систем ИИ за последние время как раз идёт по этому пути. Степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий разная, но в целом пока, увы, незначительна.
В наибольшей мере системы ИИ используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Но даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта ещё слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте, и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы выводов. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием - проверка информации на непротиворечивость, конструирования планов вычислений и т. п.
Сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен в принципе. Языки, используемые в ЭВМ, ещё далеки от семиотических структур, которыми оперирует мышление. Прежде всего, для решения ряда задач, необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например, полисемией (которая элиминируется при обработке в лингвистическом процессоре). Уже разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом такой работы является создание семантических языков (и их формализация), в которых слова-символы имеют определенную интерпретацию.
Многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках ИИ пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все чаще воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем ИИ, особенно тех, в которых проблемная область заранее чётко не определена.
Сегодня системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, чертить на экране кривые и т. п. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Правда современные системы ИИ пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального, а не локального, оперирования информацией составляет одну из важнейших и задач теории искусственного интеллекта.
Воплощение в информационные массивы и программы систем ИИ аналогов категорий находится пока в начальной стадии. Например, в категории входят понятия «целое», «часть», «общее», «единичное». Они используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы. В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные попытки выражения некоторых моментов содержания и других категорий (например, «причина» и «следствие»). Однако ряд категорий (например, «сущность» и «явление») в языках систем представления знаний отсутствует. В целом, данная проблема разработчиками систем ИИ в полной мере ещё не осмыслена, и предстоит ещё большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний, и другие компоненты интеллектуальных систем.
Современные системы ИИ почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. п. Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах, использующихся при представлении знаний, пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. п.
Ещё в меньшей мере современные системы ИИ способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.
Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы ещё далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.
Поэтому возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется сам процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Также не исключено, что хотя мы и можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку.
Подобный взгляд обосновывается X. Дрейфусом. «Телесная организация человека - пишет он - позволяет ему выполнять... функции, для которых нет машинных программ - таковые не только ещё не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся».
Подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает отдельного внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключено, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен машинам.
В философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Но в этом рассуждении не учитывается, что пути усложнения материи однозначно не однозначны, и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований. X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «не телесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело с ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.
Обладающие психикой системы отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чём и выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковая информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый - круг поиска сокращается, и, тем самым, облегчается решение задачи. Второй - нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений». С этим можно не согласится. Если предложенный «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.
Живое существо в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь, посредством дрессировки. В этом смысле потенциальные интеллектуальные возможности машины шире подобных возможностей животных. У человека же над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей, и с точки зрения возможностей их удовлетворения. Однако эта универсальность особо присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта. Следовательно, телесная организация не только даёт дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных или иных потребностей. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Цели для них необходимо задавать в явной форме.
Следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах «третьего поколения» ЭВМ выполняет и «интеллектуальные» функции. Их взаимодействие с миром призвано совершенствовать их «интеллект». Такого рода роботы имеют «телесную организацию», конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, образно говоря, могла бы совершать поиск цифровая машина. Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интеллектуальных задач более высокого порядка, требующих учёта глобального характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Техническая, а не только биологическая, эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим ещё далеко не исчерпаны возможности совершенствования систем ИИ путём использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.
Информация о работе Проблема создания искусственного интеллекта