Автор: Пользователь скрыл имя, 10 Января 2013 в 20:33, шпаргалка
Десятичная
система
Двоичная система
Шестнадцатеричная система
Виды памяти ПК
Магистрально-модульный принцип построения ПК
Устройство ввода и вывода информации
Оптические устройства информации
Таким образом, кодирование сводится к использованию совокупности символов по строго определенным правилам.
Кодировать информацию можно различными способами: устно; письменно; жестами или сигналами любой другой природы.
В качестве единицы информации условились принять один бит (англ. bit - binary, digit - двоичная цифра).
Бит в теории информации - количество информации, необходимое для различения двух равновероятных сообщений.
В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд.
Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т.п.).
Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:
00 01 10 11
Тремя битами можно закодировать восемь различных значений:
000 001 010 011 100 101 110 111
Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе, то есть общая формула имеет вид:
где N - количество независимых кодируемых значений; m - разрядность двоичного кодирования, принятая в данной системе.
Бит - слишком мелкая единица измерения. На практике чаще применяется более крупная единица - байт, равная восьми битам.
Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера:
Широко используются также ещё
более крупные производные
В последнее время в связи
с увеличением объёмов
Кодирование текстовой информации
Если каждому символу алфавита сопоставить определенное целое число (например, порядковый номер), то с помощью двоичного кода можно кодировать и текстовую информацию.
Для хранения двоичного кода одного символа выделен 1 байт = 8 бит.
Учитывая, что каждый бит принимает значение 0 или 1, количество их возможных сочетаний в байте равно:
Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов.
Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, графические символы и т.д.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111.
Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.
Важно, что присвоение символу конкретного кода - это вопрос соглашения, которое фиксируется в кодовой таблице.
Кодирование текстовой информации
с помощью байтов опирается на
несколько различных
В системе ASCII закреплены две таблицы кодирования - базовая и расширенная.
Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.
Первые 33 кода (с 0 до 32) соответствуют не символам, а операциям (перевод строки, ввод пробела и т. д.).
Коды с 33 по 127 являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.
Коды с 128 по 255 являются национальными, т.е. в национальных кодировках одному и тому же коду соответствуют различные символы.
Кодирование графической информации
Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые, в свою очередь, содержат определенное количество точек (пикселей).
Каждому пикселю присвоен код, хранящий информацию о цвете пикселя.
Для получения черно-белого изображения (без полутонов) пиксель может принимать только два состояния: “белый” или “черный”.
Тогда для его кодирования достаточно 1 бита: 1 – белый, 0 – черный.
Пиксель на цветном дисплее может иметь различную окраску. Поэтому 1 бита на пиксель – недостаточно.
Для кодирования 4-цветного изображения требуется два бита на пиксель, поскольку два бита могут принимать 4 различных состояния.
Может использоваться, например, такой вариант кодировки цветов:
00 – черный
10 – зеленый
01 – красный
11 – коричневый.
Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого, синего.
Из трех цветов можно получить восемь комбинаций:
Следовательно, для кодирования 8-цветного изображения требуется три бита памяти на один пиксель.
Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности, тогда количество различных вариантов их сочетаний, дающих разные краски и оттенки, увеличивается.
Шестнадцатицветная палитра получается при использовании 4-разрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно.
Также графическая информация может быть представлена в виде векторного изображения.
Векторное изображение представляет собой графический объект, состоящий из элементарных отрезков и дуг.
Положение этих элементарных объектов определяется координатами точек и длиной радиуса.
Для каждой линии указывается ее тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет.
Информация о векторном
Качество изображения
Чем больше разрешающая способность, т.е. чем больше количество строк растра и точек в строке, тем выше качество изображение.
Кодирование звуковой информации
Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой.
Чем больше амплитуда, тем он громче для человека, чем больше частота сигнала, тем выше тон.
Программное обеспечение компьютера в настоящее время позволяет непрерывный звуковой сигнал преобразовывать в последовательность электрических импульсов, которые можно представить в двоичной форме.
Аудиоадаптер (звуковая плата) – специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.
В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины.
Затем полученный код из регистра переписывается в оперативную память компьютера.
Качество компьютерного звука определяется характеристиками аудиоадаптера: частотой дискретизации и разрядностью.
Компьютерные сети Общие сведения о сетях
Современное производство требует
высоких скоростей обработки
информации, удобных форм ее хранения
и передачи. Необходимо также иметь
динамичные способы обращения к
информации, способы поиска данных
в заданные временные интервалы;
реализовывать сложную
Принцип централизованной обработки
данных не отвечал высоким требованиям
к надежности процесса обработки, затруднял
развитие систем и не мог обеспечить
необходимые временные
Появление малых ЭВМ, микроЭВМ и персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных, т.е. обработке, выполняемой на независимых, но связанных между собой компьютерах, представляющих распределенную систему.
Для реализации распределенной обработки
данных были созданы многомашинные
ассоциации, структура которых
· многомашинные вычислительные комплексы (МВК) - группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и выполняющих совместно информационно-вычислительный процесс;
· компьютерные (вычислительные) сети - совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.
Компьютерные сети являются высшей формой многомашинных ассоциаций. Выделяют основные отличия компьютерной сети от многомашинного вычислительного комплекса.
Первое отличие - размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до тысяч километров.
Второе отличие - разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки данных, передачи и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции разделены между различными ЭВМ.
Третье отличие - необходимость
решения в сети задачи маршрутизации
сообщений. Сообщение от одной ЭВМ
к другой может быть передано по
различным маршрутам в
В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:
· глобальные сети (WAN - Wide Area Network);
· региональные сети (MAN - Metropolitan Area Network);
· локальные сети (LAN - Local Area Network).
Локальная вычислительная сеть объединяет
абонентов, расположенных в пределах
небольшой территории. В настоящее
время не существует четких ограничений
на территориальный разброс
Основной назначение любой компьютерной сети - предоставление информационных и вычислительных ресурсов подключенным к ней пользователям.
С этой точки зрения локальную вычислительную сеть можно рассматривать как совокупность серверов и рабочих станций.
Сервер - компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами. Серверы могут осуществлять хранение данных, управление базами данных, удаленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер - источник ресурсов сети.
Рабочая станция - персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам. Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MS DOS, Windows и т.д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач.
Компьютерные сети, как было сказано выше, реализуют распределенную обработку данных. Обработка данных в этом случае распределена между двумя объектами: клиентом и сервером.
Клиент - задача, рабочая станция или пользователь компьютерной сети. В процессе обработки данных клиент может сформировать запрос на сервер для выполнения сложных процедур, чтения файлов, поиск информации в базе данных и т.д.
Сервер, определенный ранее, выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту.
Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя. Для подобных систем приняты термины - системы или архитектура клиент - сервер.
Архитектура клиент - сервер может использоваться как в одноранговых сетях, так и в сети с выделенным сервером.
Одноранговая сеть, в которой нет единого центра управления взаимодействием рабочих станций и нет единого центра для хранения данных. Сетевая операционная система распределена по рабочим станциям. Каждая станция сети может выполнять функции как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть. Пользователю сети доступны все устройства, подключенные к другим станциям.