Экспертные системы

Автор: Пользователь скрыл имя, 08 Ноября 2011 в 06:53, курсовая работа

Краткое описание

Экспе́ртная систе́ма (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания[1].

Оглавление

Введение
Глава 1. Экспертные системы, их особенности. Применение экспертных систем
1.1. Определение экспертных систем. Главное достоинство и назначение экспертных систем
1.2. Отличие ЭС от других программных продуктов
1.3. Отличительные особенности. Экспертные системы первого и второго поколения
1.4. Области применения экспертных систем
1.5. История развития экспертных систем
1.6. Преимущества ЭС перед человеком - экспертом
Глава 2. Структура систем, основанных на знаниях
2.1. Критерий пользователя ЭС
2.2. Подсистема приобретения знаний
2.3. База знаний
2.4. Подсистема вывода
Глава 3. Классификация экспертных систем
Заключение
Список литературы

Файлы: 1 файл

Введение055.doc

— 115.50 Кб (Скачать)

1.5. История развития экспертных систем 

1.5.1. Основные линии развития ЭС   

 Наиболее  известные ЭС, разработанные в 60-70-х годах, стали в своих областях уже классическими. По происхождению, предметным областям и по преемственности применяемых идей, методов и инструментальных программных средств их можно разделить на несколько семейств.

1. META-DENDRAL.Система DENDRAL позволяет определить наиболее вероятную структуру химического соединения по экспериментальным данным (масс- спектрографии, данным ядерном магнитного резонанса и др.).M-D автоматизирует процесс приобретения знаний для DENDRAL. Она генерирует правила построения фрагментов химических структур.

2. MYCIN-EMYCIN-TEIREIAS-PUFF-NEOMYCIN. Это семейство медицинских ЭС и сервисных программных средств для их построения.

3. PROSPECTOR-KAS. PROSPECTOR- предназначена для поиска (предсказания) месторождений на основе геологических анализов. KAS- система приобретения знаний для  PROSPECTOR.

4. CASNET-EXPERT.  Система CASNET- медицинская ЭС для диагностики выдачи рекомендаций по лечению глазных заболеваний. На ее основе разработан язык инженерии знаний EXPERT, с помощью которой создан ряд других медицинских диагностических систем.

5. HEARSAY-HEARSAY-2-HEARSAY-3-AGE. Первые две системы этого ряда являются развитием интеллектуальной системы распознавания слитной человеческой речи, слова которой берутся из заданного словаря. Эти системы отличаются оригинальной структурой, основанной на использовании доски объявлений- глобальной базы данных, содержащей текущие результаты работы системы. В дальнейшем на основе этих систем были созданы инструментальные системы HEARSAY-3 и AGE (Attempt to Generalize- попытка общения) для построения ЭС.

6. Системы AM (Artifical Mathematician- искусственный математик) и EURISCO были разработаны в Станфордском университете доктором Д. Ленатом для исследовательских и учебных целей. Ленат считает, что эффективность любой ЭС определяется закладываемыми в нее знаниями. По его мнению, чтобы система была способна к обучению, в нее должно быть введено около миллиона сведений общего характера. Это примерно соответствует объему информации, каким располагает четырехлетний ребенок со средними способностями. Ленат также считает, что путь создания узкоспециализированных ЭС с уменьшенным объемом знаний ведет к тупику.   

 В  систему AM первоначально было  заложено около 100 правил вывода  и более 200 эвристических алгоритмов  обучения, позволяющих строить произвольные  математические теории и представления. Сначала результаты работы системы были весьма многообещающими. Она могла сформулировать понятия натурального ряда и простых чисел. Кроме того, она синтезировала вариант гипотезы Гольдбаха о том, что каждое четное число, большее двух, можно представить в виде суммы двух простых чисел. До сих пор не удалось ни найти доказательства данной гипотезы, ни опровергнуть ее. Дальнейшее развитие системы замедлилось и было отмечено, что, несмотря на проявленные, на первых порах “математические способности”, система не может синтезировать новых эвристических правил, т.е. ее возможности определяются только теми эвристиками, что были в нее изначально заложены.   

 При  разработке системы EURISCO была  предпринята попытка преодолеть  указанные недостатки системы AM. Как и в начале эксплуатации AM, первые результаты, полученные с помощью EURISCO, были эффективными. Сообщалось, что система EURISCO может успешно участвовать в очень сложных играх. С ее помощью в военно-стратегической игре, проводимой ВМФ США, была разработана стратегия, содержащая ряд оригинальных тактических ходов. Согласно одному из них, например, предлагалось взрывать свои корабли, получившие повреждения. При этом корабли, оставшиеся неповрежденными, получает необходимое пространство для выполнения маневра.   

 Однако  через некоторое время обнаружилось, что система не всегда корректно  переопределяет первоначально заложенные  в нее правила. Так, например, она стала нарушать строгое  предписание обращаться  к программистам с вопросами только в определенное время суток. Т.о., система EURISCO, так же как и ее предшественница, остановилась в своем развитии, достигнув предела, определенного, в конечном счете ее разработчиком.   

 С  1990 года доктор Ленат во главе  исследовательской группы занят  кодированием и вводом нескольких сот тысяч элементов знаний, необходимых, по его мнению, для создания “интеллекту-

альной” системы. Этот проект назван Cyc (“Цик”, от английского слова enciklopaedia).  

1.5.2. Проблемы, возникающие при создании ЭС. Перспективы разработки

      С 70-х годов ЭС стали ведущим направлением в области искусственного интеллекта. При их разработке нашли применение методы ИИ, разработанные ранее: методы представления знаний, логического вывода, эвристического поиска, распознавания предложений на естественном языке и др. Можно утверждать, что именно ЭС позволили получить очень большой коммерческий эффект от применения таких мощных методов. В этом - их особая роль.    

 Каталог  ЭС и инструментальных  программных средств для их разработки, опубликованный в США в 1987 году, содержит более 1000 систем (сейчас их уже значительно больше). В развитых зарубежных странах сотни фирм занимаются их разработкой и внедрением. Имеются и отечественные разработки ЭС, в том числе - нашедший промышленное применение.  

 Однако  уже на начальных этапах выявились  серьезные принципиальные трудности,  препятствующие более широкому распространению ЭС и серьезно замедляющие и осложняющие их разработку. Они вполне естественных и вытекают из самих принципов разработки ЭС.  

 Первая  трудность возникает в связи  с постановкой задач. Большинство  заказчиков, планируя разработку  ЭС, вследствие недостаточной компетентности в вопросах применения методов ИИ, склонна значительно преувеличивать ожидаемые возможности системы. Заказчик желает увидеть в ней самостоятельно мыслящего эксперта в исследуемой области, способного решать широкий круг задач. Отсюда и типичные первоначальные постановки задачи по созданию ЭС: “Разработать ЭС по обработке изображения”; “Создать медицинские ЭС по лечению заболеваний опорно-двигательного аппарата у детей”. Однако, как уже отмечалось, мощность эвристических методов решения задач при увеличении общности их постановки резко уменьшается. Поэтому наиболее целесообразно (особенно при попытке создания ЭС в области, для которой у разработчиков еще нет опыта создания подобных систем) ограничиться для начала не слишком сложной обозримой задачей в рассматриваемой области, для решения которой нет простого алгоритмического способа (то есть неочевидно, как написать программу для решения этой задачи, не используя методы обработки знаний). Кроме того, важно, чтобы уже существовала сложившаяся методика решения этой задачи “вручную” или какими-либо расчетными методами. Для успешной разработки ЭС необходимы не только четкая и конкретная постановка задач, но и разработка подробного (хотя бы словесного) описания “ручного” (или расчетного) метода ее решения. Если это сделать затруднительно, дальнейшая работа по построению ЭС теряет смысл.   

 Вторая  и основная трудность - проблема приобретения (усвоения) знаний. Эта проблема возникает при “передаче” знаний, которыми обладают эксперты-люди, ЭС. Разумеется для того, чтобы “обучить” им компьютерную систему, прежде всего требуется сформулировать, систематизировать и формализовать эти знания “на бумаге”. Это может показаться парадоксальным, но большинство экспертов (за исключением, может быть, математиков), успешно используя в повседневной деятельности свои обширные знания, испытывают большие затруднения при попытке сформулировать и представить в системном виде хотя бы основную часть этих знаний: иерархию используемых понятий, эвристики, алгоритмы, связи между ними. Оказывается, что для подобной формализации знаний необходим определенный систематический стиль мышления, более близкий математикам и программистам, чем, например, юристам и медикам. Кроме того, необходимы, с одной стороны, знания в области математической логики и методов представления знаний, с другой - знания возможности ЭВМ, из программного обеспечения, в частности, языков и систем программирования.

Таким образом, выясняется, что для разработки ЭС необходимо участие в ней особого  рода специалистов, обладающих указанной  совокупностью знаний и выполняющих  функции “посредников” между  экспертами в предметной области и компьютерными (экспертными) системами. Они получили название инженеры знаний (в оригинале - knowledge engineers), а сам процесс разработки ЭС и других интеллектуальных программ, основанных на представлении и обработке знаний - инженерией знаний (knowledge engineering).

1.6. Преимущества ЭС перед человеком - экспертом

      Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом.

      1. У них нет предубеждений. 

      2. Они не делают поспешных выводов. 

3. Эти  системы работают систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

      4. База знаний может быть очень  и очень большой. Будучи введены  в машину один раз, знания  сохраняются навсегда. Человек же  имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.

      5. Системы, основанные на знаниях,  устойчивы к “помехам”. Эксперт  пользуется побочными знаниями  и легко поддается влиянию  внешних факторов, которые непосредственно  не связаны с решаемой задачей. ЭС, не обремененные знаниями из других областей, по своей природе менее подвержены “шумам”. Со временем системы, основанные на знаниях, могут рассматриваться пользователями как разновидность тиражирования- новый способ записи и распространения знаний. Подобно другим видам компьютерных программ они не могут заменить человека в решении задач, а скорее напоминают орудия труда, которые дают ему возможность решат задачи быстрее и эффективнее.

      6. Эти системы не заменяют специалиста,  а являются инструментом в его руках.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Глава 2. Структура систем, основанных на знаниях

2.1. Критерий пользователя ЭС   

  Экспертные системы имеют две категории пользователей  и два отдельных “входа”, соответствующих различным целям взаимодействия пользователей с ЭС:

1)обычный  пользователь (эксперт), которому требуется консультация ЭС- диалоговый сеанс работы с ней, в процессе которой она решает некоторую экспертную задачу. Диалог с ЭС осуществляется через диалоговый процессор- специальную компоненту ЭС. Существуют две основные формы диалога с ЭС- диалог на ограниченном подмножестве естественного языка ( с использованием  словаря- меню (при котором на каждом шаге диалога система предлагает выбор профессионального лексикона экспертов) и диалог на основе из нескольких возможных действий);

экспертная  группа инженерии знаний, состоящая  из экспертов в предметной области  и инженеров знаний. В функции  этой группы входит заполнение базы знаний, осуществляемое с помощью специализированной диалоговой компоненты ЭС - подсистемы приобретения знаний, которая позволяет частично автоматизировать этот процесс.                                                             2.2.  Подсистема приобретения знаний   

 Подсистема  приобретения знаний предназначена  для добавления в базу знаний новых правил и модификации имеющихся. В ее задачу входит приведение правила к виду, позволяющему подсистеме вывода применять это правило в процессе работы. В более сложных системах предусмотрены еще и средства для проверки вводимых или модифицируемых правил на непротиворечивость с имеющимися правилами.  

2.3.  База знаний   

 База  знаний - наиболее важный компонент экспертной системы, на которой основаны ее «интеллектуальные способности». В отличие от всех остальных компонент ЭС, база знаний - «переменная » часть системы, которая может пополняться и модифицироваться инженерами знаний и опыта  использование ЭС, между консультациями (а в некоторых системах и в процессе консультации). Существует несколько способов представления знаний в ЭС, однако общим для всех них является то, что знания представлены в символьной форме (элементарными компонентами представления знаний являются тексты, списки и другие символьные структуры). Тем самым, в ЭС реализуется принцип символьной природы рассуждений, который заключается в том, что процесс рассуждения представляется как последовательность символьных преобразований.    

 Наиболее  распространенный способ представления  знаний - в виде конкретных фактов и правил, по которым из имеющихся фактов могут быть выведены новые.  

2.4. Подсистема вывода   

 Подсистема  вывода - программная компонента  экспертных систем, реализующая  процесс ее рассуждений на  основе базы знаний и рабочего  множества. Она выполняет две  функции: во-первых, просмотр существующих  фактов из рабочего множества и правил из базы знаний и добавление (по мере возможности) в рабочее множество новых фактов и, во-вторых, определение порядка просмотра и применения правил. Эта подсистема управляет процессом консультации, сохраняет для пользователя информацию о полученных заключениях, и запрашивает у него информацию, когда для срабатывания очередного правила в рабочем множестве оказывается недостаточно данных.   

Информация о работе Экспертные системы