Автор: Пользователь скрыл имя, 12 Декабря 2012 в 10:36, курсовая работа
Процесс каталитического риформинга предназначен для повышения детонационной стойкости бензинов и получения индивидуальных ароматических углеводородов, главным образом бензола, толуола, ксилолов – сырья нефтехимии. Важное значение имеет получение в процессе дешевого водородосодержащего газа для использования в других гидрокаталитических процессах. Значение процессов каталитического риформинга в нефтепеработке существенно возросло в 1990-гг. в связи с необходимостью производства неэтилированного высокооктанового автобензина.
Введение
1.Теоретическая часть
1.1 Назначение, химизм и термодинамика процесса риформинга.
1.2 Катализаторы процесса. Свойства и состав катализаторов риформинга.
2. Методическая часть
2.1 Методы определения фракционного и группового химического состава бензиновых фракций.
Заключение.
Список использованной литературы.
УО «ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Кафедра химической
технологии топлива и
углеродных материалов
По дисциплине «Теоретические основы химической переработки природных энергоносителей»
Тема: Теоритические основы риформинга
Выполнил: студент (заочник)
Инженерно-технологического
группа 08-ХТз-2
Кодис В.В.
Проверил: к.х.н. доцент Покровская С.В.
Новополоцк. 2012
Содержание
Введение
1.Теоритическая часть
1.1 Назначение, химизм и термодинамика процесса риформинга.
1.2 Катализаторы процесса. Свойства
и состав катализаторов
2. Методическая часть
2.1 Методы определения
Заключение.
Список использованной литературы.
Введение
Процесс каталитического риформинга предназначен для повышения детонационной стойкости бензинов и получения индивидуальных ароматических углеводородов, главным образом бензола, толуола, ксилолов – сырья нефтехимии. Важное значение имеет получение в процессе дешевого водородосодержащего газа для использования в других гидрокаталитических процессах. Значение процессов каталитического риформинга в нефтепеработке существенно возросло в 1990-гг. в связи с необходимостью производства неэтилированного высокооктанового автобензина.
Бензиновые фракции большинства нефтей содержат 60-70% парафиновых, 10% ароматических и 20-30% пяти и шестичленных нафтеновых углеводородов. Среди парафиновых преобладают углеводороды нормального строения и моно-метилзамещенные их изомеры. Нафтены представлены преимущественно алкилгомологами циклогексана и циклопентана, а ароматические – алкилбензолами. Такой состав обуславливает низкое октановое число прямогонного бензина, обычно не превышающего 50 пунктов.
Помимо прямогонных бензинов как сырье каталитического риформинга используют бензины вторичных процессов – коксования и термического крекинга после их глубокого гидрооблагораживания, а также гидрокрекинга.
Выход прямогонных
бензинов относительно невелик (около
15-20% от нефти). Кроме того, часто бензинов
используется и для других целей
(сырье пиролиза, производство водорода,
получение растворителей и т.д.
Каталитический риформинг является в настоящее время наиболее распространенным методом каталитического облагораживания прямогонных бензинов. Установки каталитического риформинга имеются практически на всех отечественных и зарубежных нефтеперерабатывающих заводах.
1. Теоритическая часть
1.1 Назначение, химизм и термодинамика процесса
Риформинг - (от англ. Reforming - переделывать, улучшать) промышленный процесс переработки бензиновых и лигроиновых фракций нефти. При этом молекулы углеводородов в основном не расщепляются, а преобразуются.
Основным назначением каталитического
- превращение низкооктановых
- превращение узких или широких бензиновых фракций, получаемых при переработке любых нефтей или газового конденсата, в катализат, из которого тем или иным методом выделяют ароматические углеводороды, в основном бензол, толуол, этилбензол и изомеры ксилола.
На протяжении последних тридцати лет процесс каталитического риформинга является одним из важнейших процессов большинства нефтеперерабатывающих заводов, являясь основным производителем базового компонента высокооктановых автомобильных бензинов и ароматических углеводородов. Это связано со многими причинами, в частности - это приемлемый химический состав: содержат около 1% олефиновых и 2-5% нафтеновых углеводородов, в основном замещенных циклопентанов. Алкановые углеводороды состоят в основном из пентанов, гексанов и в значительно меньшей степени из гептанов с высоким отношением изокомпонентов к компонентам нормального строения. Алкановые С8 и выше практически отсутствуют в составе риформата.
Ароматические компоненты в бензине представлены в основном углеводородами С7-С9. С повышением пределов выкипания фракции катализата содержание ароматических углеводородов в ней быстро возрастает. Состав ароматических углеводородов С8 в катализате риформинга мало зависит от состава сырья и условий процесса: содержание этилбензола, о-, м- и n-ксилола составляет соответственно (в % масс): 13-20, 15-25, 40-45 и 18-20. Термодинамически равновесная смесь при 800 К содержит этилбензола, о-, м- и n-ксилола соответственно 10,8; 22,8; 45,8 и 20,6% (масс.).
Бензины риформинга
содержат 60—70% ароматических углеводородов и имеют
Таким образом, бензины риформинга характеризуется высокой химической стабильностью и высокими октановыми числами. Недостатком их является высокое содержание ароматических углеводородов, поэтому для получения экологически чистых товарных бензинов необходимо изменение технологии их приготовления, то есть нужно снижать суммарное количество ароматических углеводородов и в том числе бензола, при этом не снижая октановое число.
Сырьем каталитического риформинга служат бензиновые фракции с началом кипения не ниже 60-62оС, поскольку в самых легких фракциях бензина не содержатся углеводороды с шестью атомами углерода и присутствие легких фракций в сырье вызывает ненужное газообразование. Обычно риформингу подвергают фракцию, выкипающую в пределах 85-180оС. Повышение конца кипения способствует коксообразованию и потому нежелательно. С повышением начала кипения растет выход бензина, так как более тяжелые нафтеновые и парафиновые углеводороды легче подвергаются ароматизации. Однако фракции с началом кипения 105 или 140оС применяют обычно в тех случаях, когда более легкие фракции направляют на отдельную установку риформинга для получения индивидуальных ароматических углеводородов.
Решающее значение имеет углеводородный состав исходного бензина: чем больше сумма нафтеновых и ароматических углеводородов в бензине, тем селективнее процесс, т.е. тем больше выход катализата и соответственно меньше выход продукта побочных реакций гидрокрекинга - углеводородного газа.
Подготовка сырья риформинга включает ректификацию и гидроочистку. Ректификация используется для выделения определенных фракций бензинов в зависимости от назначения процесса. При гидроочистке из сырья удаляют примеси (сера, азот и др.), отравляющие катализаторы риформинга, а при переработке бензинов вторичного происхождения подвергают также гидрированию непредельные углеводороды.
В основе каталитического риформинга лежат три типа реакций:
Как и при каталитическом крекинге, осуществление всех названных реакций риформинга ведет к увеличению октанового числа бензина.
Использование
бифункционального катализатора значительно
облегчает образование
При риформингеалканы подвергаются изомеризации, дегидроциклизации и гидрокрекингу.
Изомеризация алканов протекает по карбкатионному механизму с образованием малоразветвленных изомеров, наиболее термодинамически стабильных в условиях риформинга. Скорость изомеризации возрастает с увеличением молекулярной массы алкана.
Дегидроциклизация — одна из важнейших реакций риформинга, заключающаяся в превращении алканов в арены:
Дегидроциклизация протекает с поглощением теплоты (около 250 кДж/моль), поэтому константа равновесия реакции возрастает с повышением температуры. Давление сдвигает равновесие реакции влево, т. е. в сторону гидрирования аренов. Однако на практике для уменьшения отложений кокса на катализаторе процесс проводят под повышенным давлением водорода. При температуре 500 °С под давлением водорода 1,5— 1,7 МПа равновесная степень конверсии н-гептана в толуол составляет 95 %.
Механизм ароматизации алканов окончательно не ясен. Возможны следующие пути:
1) Дегидрирование алканов на платине до триена с последующей циклизацией на платине или оксиде алюминия:
2) С5-циклизация на платине через циклический переходный комплекс
3) Дегидрирование алканов в алкены на платине и циклизация алкенов на оксиде алюминия также с образованием пятичленного цикла. Реакция протекает по согласованному механизму, включающему протонирование двойной связи кислотным центром и одновременный отрыв протона от атома углерода в цепи:
Образовавшиеся
пятичленные циклы
Экспериментальные данные свидетельствуют о том, что ароматизация идет по всем рассмотренным направлениям.
Если исходныйалкан содержит менее шести атомов углерода в основной цепи, то ароматизации предшествует изомеризация алкана с удлинением основной цепи. Скорость ароматизации возрастает с увеличением длины цепи алкана. Алканы, содержащие десять и более атомов углерода, образуют арены с конденсированными кольцами. Арены с достаточно длинными боковыми цепями могут замыкать дополнительные циклы:
В результате дегидроциклизацииалканов образуются гомологи бензола и нафталина с максимальным содержанием метальных заместителей в ядре, которое допускается строением исходного алкана.
Гидрокрекинг алканов приводит к образованию низкомолекулярных соединений:
Роль гидрокрекинга в процессе риформинга не однозначна. С одной стороны, снижение молекулярной массы алканов приводит к увеличению октанового числа, а с другой стороны, в результате гидрокрекинга образуется значительное количество газообразных продуктов, что снижает выход бензина. Таким образом, роль гидрокрекинга должна быть ограничена.
Для снижения
роли гидрокрекинга процесс
2.Превращение циклоалканов
В условиях риформинга циклоалканы также подвергаются изомеризации, дегидрированию до аренов и гидрокрекингу.
Шестичленные циклоалканы изомеризуются в пятичленные по карбкатионному механизму:
Хотя равновесие изомеризации, как и.при каталитическом крекинге, почти нацело смещено вправо, реакция обратима, так как шестичленные циклоалканы в условиях риформинга дегидрируются в арены, причем равновесие сильно сдвинуто в сторону аренов:
Избирательность превращения циклогексана в метилциклопентан и бензол в конечном счете определяется соотношением скоростей реакций и зависит от активности компонентов катализатора. Изомеризация протекает на кислотных центрах по карбкатионному механизму, поэтому при высокой кислотности катализатора будет увеличиваться выход метйлциклопентана. Дегидрирование происходит на металлическом компоненте катализатора, и с увеличением активности металла будет возрастать скорость образования бензола. Адсорбция шестичленного циклоалкана на металле может сопровождаться либо одновременной диссоциацией шести связей С—Н, либо последовательным быстрым отщеплением атомов водорода:
Реакция эндотермична, поэтому с повышением температуры равновесный выход аренов увеличивается. Скорость дегидрирования гомологов циклогексана выше, чем циклогексана.гем-Замещенные циклогексаны ароматизируются с отщеплением метильной группы или с ее миграцией:
Бициклические
щестичленныециклоалканыдегидри
Гидрокрекинг шестичленныхциклоалканов происходит в незначительной степени по схеме, описанной для алканов. В условиях риформинга скорость дегидрирования шестичленных циклоалканов в арены значительно выше скорости других реакций (изомеризации в пятичленные и гидрокрекинга). Поэтому селективность превращения циклоалканов в арены составляет практически 100 %.
Пятичленные замещенные циклоалканы в условиях риформинга вступают в следующие реакции:
Дегидроизомеризация:
Первая реакция протекает на кислотных центрах катализатора, вторая — на металлических. Выход бензола возрастает с повышением температуры и снижением давления. При температуре 500 °С снижение давления с 3,6 до 1,5 МПа приводит к увеличению выхода бензола с 45 до 90 % (масс.). Дегидрирование циклопентана в циклопентен и циклопентадиенйракти- чески не идет, так как скорость этой реакции значительно ниже скорости дегидроизомеризации. Циклопентадиен прочно адсорбируется на металле и отравляет катализатор.