Сточные воды

Автор: Пользователь скрыл имя, 07 Октября 2011 в 21:16, реферат

Краткое описание

Актуальность. Охрана окружающей среды от загрязнений является актуальной проблемой современности. В этой связи проблема очистки природных и сточных вод приобретает особо важное значение, так как она тесно связана с охраной водных ресурсов.

Файлы: 1 файл

AFGSH.docx

— 123.25 Кб (Скачать)

     Таблица 1.11 - Влияние сульфата алюминия и  гидроксохлорида алюминия совместно с ПАА на качество очистки воды

Показатель Исх. вода Коагулянты
гидроксохлорид алюминия сульфат алюминия
Доза  по Al2O3, мг·л–1   5 15 25 35 45 5 15 25 35 45
Доза  ПАА, мг·л–1   0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
Цветность, град 98 115 20 11 12 12 104 25 18 15 25
Концентрация  взв. в-в, мг·л–1 1,3 0 0 0 0 0 0 0 0 0 0
рН 7,28 7,30 7,24 7,10 7,05 6,80 7,15 6,75 5,2 4,62 4,5
Алюминий, мг·л–1 - 0,5 0 0 0 2,15 2,1 0,45 2,25 4,48 6,22
 

     Ввод  катионного флокулянта [53] после коагулянта способствовал образованию сложных мостиков типа коагулянт – гумусовые вещества – флокулянт, последнее звено которых образовано интерполимерными комплексами [45] за счёт взаимодействия свободных (не связанных с коагулянтом) карбоксильных и гидроксильных групп гуминовых кислот с аминогруппами катионного флокулянта. По мере увеличения концентрации и ММ у анионного Праестола [52] и катионного флокулянта [53] значения цветности возрастают по причине увеличения концентрации полимерных мостиков и увеличения (r2)1/2 макромолекул флокулянта, которое способствовало охвату полимерными мостиками большого числа молекул гумусовых веществ, увеличивало размеры флокул и ускоряло их осаждение.

     Отмечены  большие значения цветности у  катионного Праестола по сравнению с анионным Праестолом, несмотря на большие значения ММ у анионного Праестола [52]. Это следствие более эффективного связывания гуминовых кислот катионным Праестолом в интерполимерных комплексах [45]. Выявленные закономерности обесцвечивания воды на модельных растворах гумусовых веществ под действием СА с анионными и катионными флокулянтами, несомненно, должны проявляться в реальных дисперсных системах.

     1.3 Очистка сточных  вод коагулянтами  и флокулянтами

 

     На  очистку сточных вод и обезвоживание  осадков существенное влияние оказывает  природа и концентрация загрязнений, технологические параметры флокуляции и молекулярные характеристики органических флокулянтов [3, 4, 19, 54].

     Однако  флокулирующие свойства полиакриламидных флокулянтов при очистке сточных вод изучены недостаточно.

     В работе [55] рассмотрено осветление сточных  вод текстильного производства (средний  размер частиц дисперсной фазы 6´10–5м) анионным (А) и катионным флокулянтами (К). В качестве флокулянта А применяли сополимер АА с Na-АК, а К – сополимер АА с ГХ ДМАЭМА.

     Отмечено  также усиление флокулирующего эффекта с ростом ММ у флокулянта А в результате увеличения (r2)1/2, которые повышали способность макромолекул связывать большее число частиц дисперсной фазы посредством мостикообразования. В широкой области содержания ионогенных звеньев в макромолекуле α для флокулянта А (α = 7 – 30 мол.%) флоккулирующий эффект максимален и не зависит от α. В отличие от флокулянта А применение флокулянта К оказалось нецелесообразным для очистки сточных вод текстильного производства.

     Эффективность применения анионных и катионных  флокулянтов в сочетании совместно с СА при очистке промывных вод, загрязнённых полимерными наполнителями, оценена в работе [56]. Наиболее качественная очистка воды обеспечивалась анионным флокулянтом Флотином (смесь ПАА и полиакриловой кислоты) в сочетании с СА, а использование катионного флокулянта Тимаксола-П (полимер диметилсульфата ДМАЭМА) не позволяло дестабилизировать загрязнения в воде. Однако осаждение взвешенных веществ в контактных осветлителях при очистке промывных вод выявило значительное преимущество катионного флокулянта по сравнению с сульфатным ПАА и Флотином [57]. Эффект очистки промывных вод Тимаксолом-П без коагулянта выше, чем Флотином с СА (наблюдается меньшее содержание взвешенных веществ и ионов алюминия). Как видно из табл. 1.12, использование анионного флокулянта без коагулянта не даёт заметного эффекта очистки промывных вод. 

     Таблица 1.12 - Влияние сульфата алюминия и  гидроксохлорида алюминия совместно с ПАА на качество очистки воды

Вид флокулянта Доза, мг·л–1 Показатели  качества воды
ПАА Al2(SO4)2 Взвешенные  вещ-ва, мг·л–1 рН Al3+, мг·л–1 Fe(общ.), мг·л–1
ПАА 2 – 3 30 – 60 6 – 10 4,0 – 4,6 2,6 –7,1 0,20 –0,28
Флотин 3 – 4 - 26 – 42 6,2 – 7,0 2,1 –2,5 0,18 –0,29
Тимаксол-П 4 – 5 - 2 – 4 6,5 – 7,3 0,8 –1,2 0,20 –0,23
 

     Максимальное  осветление воды отмечено при использовании  Тимаксола-П и при совместном применении ПАА и СА. При этом оптимальная доза ПАА составляла 2-3 мг·л–1 при применении с СА (дозы 30-60 мг·л–1), а Тимаксола-П 4-5 мг·л–1 (при концентрации в промывных водах взвешенных веществ 42-172 мг·л–1, содержании железа 0.65 мг·л–1, ионов алюминия 12 мг·л–1). Очищенная вода при обработке ПАА совместно с коагулянтом, а также Тимаксолом-П по всем показателям [кроме Al3+ (0.8-7.1 мг·л–1)] соответствовала требованиям нормативов.

     В работе [58] оптимизирован процесс  очистки сточных вод красильного  цеха обойной фабрики от водорастворимых красителей, казеинового клея, каолина и латекса при применении флокулянта и коагулянта. Определены оптимальные гидродинамические условия флокуляции: время перемешивания в отстойнике 10 мин при градиенте скорости перемешивания 15-20 мин-1, которые сократили продолжительность отстаивания загрязнений с 16-18 час до 2-3 час. Проведены производственные испытания очистки сточных вод с применением неионного ПАА с невысокой М, неионного ПАА Н-150, а также анионного флокулянта А-930 с высокой М. Выявлена наилучшая флокулирующая активность анионного флокулянта по сравнению с другими полимерами, который существенно снижает цветность воды при изменении состава сточных вод. Введение флокулянта А-930 увеличивало эффективность задержания взвешенных веществ при центрифугировании с 55-63 до 90-95% для влажности обезвоженного осадка 75-78%. Отмечено, что для повышения эффективности процесса осветления стоков необходимо поддерживать рН обрабатываемой воды в пределах 7.5-8.0.

     Обработка сточных вод дубильных операций кожевенного производства с применением  флокулянта Феннопола А-321 (сополимер АА с Na-AK с α = 6 мол %) с кальцинированной содой позволяло интенсифицировать процесс разделения суспензии гидроксида хрома [59]. Введение флокулянта и подогрев смеси до 80°С сокращало время осаждения в 4 раза, уменьшало объём образующего осадка в 2 – 2,5 раза и приводило к содержанию в сливной воде концентрации 1090 трёхвалентного хрома не более 10 мг·л–1.

     Технология  очистки нефтесодержащих сточных  вод, описанная в работе [60], предусматривает  совместное использование флокулянта Феннопола А-321 с СА. Подача растворов реагентов производилась перед отстойниками в трубопровод сточной воды (на расстоянии 0.5 км от распределительной камеры) с временем пребывания реагентов 5-6 мин (1 вариант) и непосредственно в распределительную камеру с временем пребывания реагентов 0.6 мин (2 вариант). Дозы флокулянта 0,3 мг·л–1 и коагулянта 2,5-9 мг·л–1 обеспечивали удаление нефтепродуктов на 60% (при 1 варианте) и 42% (при 2 варианте), снижение ХПК на 80% (при 1 варианте) и на 30% (при 2 варианте), а без реагентной очистки эффективность удаления нефтепродуктов в отстойниках составляла 25%, а по ХПК-30%. При вводе реагентов по первому варианту на 25% возрастала производительность отстойников по сравнению с проектными данными. Таким образом, более длительный контакт реагентов с нефтесодержащими сточными водами при интенсивном перемешивании способствовал интенсификации процесса флокуляции, а применение в схемах очистки оптимальных конструкций смесителей и хлопьеобразователей повышало эффективность удаления загрязнений в 1.5-3 раза и снижало расход реагентов.

     Влияние извести и катионных флокулянтов (ВПК-402, выпускаемых ПО «Каустик» г. Стерлитамак и К100, К131, КНФ, Ф100, Ф200, выпускаемых Волжским филиалом НИИ Химполимер) на процесс обезвоживания осадков на очистных сооружениях канализации г. Харькова рассмотрено в работе [61]. Исследования проводили с сырым осадком из первичных отстойников, смесью осадков из первичных отстойников и избыточного активного ила, уплотнённым активным илом, сброженной смесью сырого осадка и избыточного активного ила, аэробно-стабилизированным активным илом. Дозы флокулянтов составляли 0,05 – 1%, а коагулянта 0,75 – 1% от массы сухого вещества в зависимости от вида осадка. Скорость обезвоживания осадков определяли на воронке Бюхнера. Обработка осадков коагулянтом совместно с флокулянтами вызывала нейтрализацию поверхностного заряда и укрупнение частиц осадка, приводила к резкому снижению их удельного сопротивления фильтрации и способствовала интенсификации процесса фильтрации. Так, при небольших дозах флокулянта (0,1 – 0,2%) скорость фильтрации возрастала в 3 – 5 раз для сырого осадка, в 4 раза – для сброженной смеси и в 2,5 раза – для активного ила по сравнению с безреагентным фильтрованием, а также в 1,5 раза для всех осадков по сравнению с обработкой их только флокулянтами. Добавление флокулянтов совместно с коагулянтом изменяло структуру осадков и уменьшало содержание связанной воды. При этом использование коагулянта позволяло значительно сократить дозу флокулянта. Анионный Праестол 2540 (доза 6 мг·л–1) в сочетании с СА (доза 60 мг·л–1) [62] повышал скорость осаждения частиц при очистке отходов флотации в 1,5 раза по сравнению с опытами без коагулянта. Аналогичные результаты достигались и при использовании смеси анионного Праестола 2540 и катионного флокулянта ВПК-402 при их весовом соотношении 3:1. Добавки Праестола без коагулянта способствовали увеличению скорости осаждения частиц в 1,3 – 1,6 раза и снижению концентрации твёрдой фазы в осветлённом слое на 20-40% по сравнению с аммиачным ПАА и полиэтиленоксидом. Однако в другой работе [63] зафиксирован сильный антагонистический эффект действия смеси анионных и катионных флокулянтов, который, по мнению авторов, обусловлен селективными взаимодействиями между противоположно заряженными макромолекулами.

     1.4 Теоретические представления  и экспериментальные  данные о механизме  флокуляции

     1.4.1 Механизмы коагуляции

     Коагуляция  представляет собой комплекс химических и физических воздействий между  отрицательно заряженными коллоидными  частицами и катионами, т.е. положительно заряженными химическими реагентами. Она использует различные силы отталкивания и притяжения, которые обеспечивают устойчивость или наоборот, неустойчивость коллоидной взвеси, а именно:

Информация о работе Сточные воды