Сточные воды

Автор: Пользователь скрыл имя, 07 Октября 2011 в 21:16, реферат

Краткое описание

Актуальность. Охрана окружающей среды от загрязнений является актуальной проблемой современности. В этой связи проблема очистки природных и сточных вод приобретает особо важное значение, так как она тесно связана с охраной водных ресурсов.

Файлы: 1 файл

AFGSH.docx

— 123.25 Кб (Скачать)

     Таблица 1.7 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону

Показатели Среднегодовые данные
1993 г. (сульфат алюминия) 1995 г. (ВПК-402)
р. Дон Вода очищенная р. Дон Вода очищенная
Цветность, град 17 7 18 8
рН 8,2 7,8 8,1 7,8
Сухой остаток, мг·л–1 928 924 781 780
Жесткость общая, мг·л–1 7,75 7,75 6,57 6,57
Щелочность, мг·л–1 3,6 3,4 3,4 3,3
Хлориды, мг·л–1 154 156 115 117
Сульфаты, мг·л–1 280 278 230 229
Аммиак, мг·л–1 0,37 0,13 0,43 0,15
Нитриты, мг·л–1 0,058 0,003 0,0057 0,005
Нитраты, мг·л–1 3,88 3,03 3,59 2,75
Железо, мг·л–1 0,40 0,17 0,58 0,23
Алюминий, мг·л–1 0,07 0,18 0,07 0,08
Цинк, мг·л–1 0,012 0,009 0,009 0,001
Медь, мг·л–1 0,021 0,016 0,020 0,016
Марганец, мг·л–1 0,054 0,028 0,110 0,084
Нефтепродукты, мг·л–1 0,15 0,05 0,100 0,05
 

     Таблица 1.8 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 3°С

Дозы  реагентов, мг·л–1 Очищенная вода
Al2(SO4)3 Магнафлок LT Цветность, град Мутность, мг·л–1
0 0 23,0 0,5
0,02 0 21,0 0,5
0,02 0,01 18,0 0,3
0,02 0,02 18,0 0
0,02 0,05 18,0 0
0,02 0,07 21,0 0
0,02 0,10 21,0 0
0,02 0,30 22,0 0
 

     Таблица 1.9 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С

Дозы  реагентов, мг·л–1 Очищенная вода
Al2(SO4)3 Магнафлок LT Цветность, град Мутность, мг·л–1
0 0 23,0 4,0
0,02 0 18,0 0,4
0,02 0,015 15,0 0,4
0,02 0,025 15,0 0,4
0,02 0,050 15,0 0,4
0,02 0,150 15,0 0,4
0,02 0,250 15,0 0,4
0,02 0,500 14,5 0,4
 

     В работе [40] оценено качество очистки  воды из поверхностных источников в  питьевой водоподготовке при совместном использовании СА и различных  флокулянтов – катионных Праестолов 611 и 650 (сополимеры АА с N-акриламидопропил-N,N,N-триметиламмонийхлоридом), анионных Праестолов 2530 и 2540, ПАА производства г. Ленинск-Кузнецкий, неионного ПАА АО «Бератон» (г. Березники), неионного ПАА Н-600 производства Завода им. С.М. Кирова (г. Пермь) и композиционного коагулянта-флокулянта КФ-91 производства КПП г. Волжский. Отмечено наиболее эффективное снижение остаточного алюминия и фитопланктона в воде, а также увеличение скорости седиментации при использовании Праестола 650 в весенний и летний периоды года и Праестола 2515 в зимних условиях (оптимальные дозы флокулянтов составляли 0,05 – 0,2 мг·дм–3).

     Результаты  опытно-промышленных испытаний бинарных реагентов – СА и ОХА с Праестолом 650 и ПАА Н-600 при водоочистке на водопроводной станции г. Екатеринбурга показаны в табл. 1.10. 

     Таблица 1.10 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С

Показатели Двухступенчатая очистка Контактное  коагулирование
К21 К22 К11 К12 К21 К2 К11 К1
Цветность 84,3 76,3 82,4 70,0 80,5 72,4 79,5 70,0
Мутность  72,1 65,5 69,5 64,5 78,0 74,0 60,4 55,4
Окисляемость  69,7 61,3 64,4 62,2 73,0 62,0 69,9 55,9
Железо (общ.) 86,2 79,4 84,5 80,3 83,2 78,0 77,9 75,4
ХПК 51,2 35,1 48,2 40,1 58,9 45,2 48,6 39,8
Гуминовые кислоты 57,6 41,4 53,5 44,7 56,3 44,3 55,1 43,8
Фульвокислоты 50,6 45,3 48,2 43,0 54,4 47,0 42,8 39,6
 

     Обработка воды Праестолом 650 по сравнению с ПАА Н-600 позволила в 2,5 – 3 раза снизить расход флокулянта и получить очищенную воду, качество которой соответствует нормативным показателям. Сочетание при водоочистке Праестола 650 с СА или ОХА обеспечило более высокую очистку воды по цветности, ХПК, окисляемости, содержанию железа, гуминовых и фульвокислот. Содержание статочного алюминия снижено до минимального предела обнаружения в воде, доза коагулянта снижена на 10 – 15% и увеличена производительность очистных сооружений за счет более высокой степени очистки воды.

     В работе [41] отмечено, что среди нескольких десятков изученных коагулянтов  и флокулянтов наиболее эффективными при водоочистке являются средне- и высокоосновные полихлориды алюминия, которые применялись с катионными Праестолами 611 ВС и 650 ВС.

     На  стадии предварительной очистки  воды на ТЭЦ оценена эффективность  использования анионных и катионных  Праестолов совместно с сульфатом железа и подщелачивающим агентом гидроксидом кальция [42, 43]. В работе [43] проведен анализ полидисперсности системы по методике [44] и показано, что наименьшая степень полидисперсности частиц дисперсной фазы в воде наблюдается в системе, содержащей анионный Праестол с α = 11 мол.% и катионный Праестол с α = 20 мол.%, эти же системы характеризуются большими размерами частиц.

     Эти факты объясняют причины высоких  скоростей седиментации дисперсной фазы в воде в присутствии анионного  и катионного Праестолов указанного состава. Показано также, что анионные Праестолы обеспечивают больший флоккулирующий эффект по сравнению с катионными Праестолами. При этом катионные Праестолы более эффективно удаляют железо и органические вещества из воды, что может быть следствием образования интерполимерных комплексов [45] между положительно заряженными макромолекулами флокулянта и отрицательно заряженными макромолекулами гуминовых и фульвокислот и их комплексов с железом, содержащемся в воде после подщелачивания её до рН 11. В присутствии катионного Праестола с α = 20 мол.% высокая степень очистки воды сохраняется при уменьшении его концентрации до 0,4 мг·л–1 и концентрации коагулянта до 15 мг·л–1.

     1.2 Обесцвечивание природной  воды коагулянтами  и флокулянтами

 

     Важной  и недостаточно изученной проблемой  при водоочистке является обесцвечивание цветных вод. Для успешного решения  этой проблемы необходимо всестороннее и глубокое изучение природы образования  цветности с учётом влияния антропогенных  примесей для каждого конкретного  водоисточника и выяснение влияния различных факторов на интенсификацию обесцвечивания воды. В средней полосе России обесцвечивание природных вод не вызывает значительных проблем, но они возникают при очистке поверхностных вод Сибири, Дальнего Востока и Крайнего Севера с цветностью до 200- 300 град. и мутностью не превышающей 25 мг·л–1. Именно такие воды наиболее трудно поддаются очистке до нормативных показателей. Из двух главных представителей гумусовых веществ – гуминовых и фульвокислот – наиболее растворимы фульвокислоты. Для них характерны высокая степень окисляемости и существенно меньшая молекулярная масса соединений и их ассоциатов [46]. Благодаря высокой растворимости фульвокислоты составляют основную часть растворённых органических веществ в поверхностных водах [47].

     На  цветность природных вод влияют различные факторы и поэтому  для каждого источника водоснабжения  возможно применение различных методов  обесцвечивания воды. Среди различных  методов обесцвечивания природных  вод (реагентная, электро- и электрохимическая коагуляция, мембранное фильтрование, флотация, очистка макропористыми ионитами, применение озонирования и сорбции, очистка в биореакторах, комплексное использование окислителей совместно с УФ-излучением) наиболее распространённым является флокуляция с использованием ПАА, коагулянта СА, хлора и, при необходимости, подщелачивания. Качественная очистка воды до нормативных показателей не достигается без применения флокулянта. При хлорировании воды, обогащённой органическими веществами, образуется значительное количество хлороформа и других хлорорганических соединений. Кроме того, воздействие окислителей (хлора и озона) на соединения гумусовых веществ в комплексах с ионами тяжёлых металлов приводит к полному выделению токсичных веществ из нетоксичных комплексов [48]. Устойчивость дисперсных систем, содержащих гуминовые и фульвокислоты, к низкомолекулярным электролитам затрудняет хлопьеобразование и повышает содержание остаточного алюминия в питьевой воде. Увеличение дозы коагулянта для дестабилизации дисперсной системы приводит к несоответствию качества очищенной воды по содержанию ионов алюминия. Кроме того, взаимодействие продуктов гидролиза СА с фульвокислотами способствует образованию растворимых и трудно удаляемых из воды комплексов [49].

     На  основании анализа литературных данных выявлено, что одним из эффективных  коагулянтов для обесцвечивания воды является ГОХА. С целью интенсификации работы водопроводной станции и  повышения качества питьевой воды в  работе [50] предложено проводить обесцвечивание природной воды (цветность 98 град, мутность 0,9 – 1,2 мг·л–1, щелочность 0,98 мг-экв·л–1) под действием бинарных реагентов – СА и ГОХА с ПАА. Методом И. В. Тюрина [51]. Результаты лабораторных исследований хорошо согласуются с производственными испытаниями по обесцвечиванию высокоцветной воды р. Ваха (цветность – 154 град, мутность – 10,4 мг·л–1, щелочность 0,2 мг-экв·л–1) [50]. ГОХА лучше снижает цветность, чем СА. При дозе ГОХА 10 мг·л–1 цветность снижается до 10 град., а в случае СА эффективного снижения цветности не происходит даже при дозе 20 мг·л–1.

     Для обесцвечивания воды могут использоваться анионные и катионные флокулянты в сочетании с СА. Для успешного применения флокулянтов необходимы данные, характеризующие взаимосвязь флокулирующих свойств с характеристиками полимеров, которые освещены в литературе недостаточно. Поэтому в работах [52, 53] изучено влияние молекулярных характеристик флокулянтов и технологических факторов на обесцвечивание водных растворов гумусовых веществ (с цветностью 226 град. по бихромат-Со шкале) при совместном действии бинарных реагентов – анионных и катионных флокулянтов с СА (табл. 1.11).  

Информация о работе Сточные воды