Сточные воды

Автор: Пользователь скрыл имя, 07 Октября 2011 в 21:16, реферат

Краткое описание

Актуальность. Охрана окружающей среды от загрязнений является актуальной проблемой современности. В этой связи проблема очистки природных и сточных вод приобретает особо важное значение, так как она тесно связана с охраной водных ресурсов.

Файлы: 1 файл

AFGSH.docx

— 123.25 Кб (Скачать)
 
 
 
 

ВВЕДЕНИЕ

     Актуальность. Охрана окружающей среды от загрязнений является актуальной проблемой современности. В этой связи проблема очистки природных и сточных вод приобретает особо важное значение, так как она тесно связана с охраной водных ресурсов.

     Большинство способов очистки природных и  производственных сточных вод, а  также способов уплотнения и обезвоживания  осадков различного типа основано на применении реагентов.

     В последние 20 лет в качестве реагентов  все большее распространение  приобретают водорастворимые высокомолекулярные вещества – флокулянты. Их использование позволяет улучшить качество очистки, повысить производительность очистных сооружений, а некоторые технологические методы, например центрифугирование, вообще невозможно осуществить без применения флокулянтов.

     Это в свою очередь стимулирует исследования в области синтеза новых синтетических  высокомолекулярных флокулянтов. Особое место среди флокулянтов занимают производные полиакриламида. Перспективными химическими структурами для получения новых производных полиакриламида являются гуанидинсодержащие соединения. Присутствие в элементарном звене полимеров гуанидиновой группы должно придавать им высокую биоцидную активность, так как хорошо известно, что соединения, содержащие в своем составе гуанидиновую группу, обладают широким спектром бактерицидного действия и используются в качестве лечебных препаратов, в том числе антибиотиков.

     В связи с этим разработка синтеза  и исследование флоккулирующих свойств  новых гуанидинсодержащих сополимеров акриламида является, несомненно, актуальной задачей.

     Задачей данной работы являлось исследование условий осаждения суспензии каолина в присутствии новых сополимеров акриламида с метакрилатом гуанидина, особенностей формирования флоккул и осадков, а также эффективности использования полученных полиэлектролитов в процессах очистки и обеззараживания природных вод.

 

     ГЛАВА 1. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод 

     Очистка природных и сточных вод тесно  связана с охраной окружающей среды и является актуальной проблемой  современности. В последние десятилетия  отмечено значительное повышение в  водах открытых водоемов содержания тяжёлых металлов, нефтепродуктов, трудноокисляемых органических соединений, синтетических поверхностно-активных веществ, пестицидов и других загрязнений вследствие сброса промышленными и коммунальными предприятиями недостаточно очищенных сточных вод.

     Несмотря  на большое число разработок, отраженных в литературе [1 – 4], проблему очистки  природных и сточных вод нельзя считать решенной. Это вызывает необходимость  совершенствования технологии очистки  воды, которая существенно зависит  от интенсификации реагентной и, в частности, флокуляционной её обработки. Для этих целей используются водорастворимые высокомолекулярные соединения, среди которых наиболее распространенными и универсальными являются полиакриламидные флокулянты [5 – 10]. В результате их применения достигается эффективность удаления тяжёлых металлов на 95%, соединений фосфора более 90%, взвешенных веществ более 80%, органических веществ более 75% [7]. Кроме того, флокуляционная очистка воды характеризуется низкими капитальными и эксплуатационными затратами по сравнению с другими методами водоочистки [1]. Вопросам флокуляции модельных и реальных дисперсных систем с использованием полиакриламидных флокулянтов посвящены монографии [2 – 4, 6, 9] и обзоры [10 – 14]. С учетом этой информации и наиболее значимых данных последних лет в настоящем литературном обзоре приводятся основные закономерности очистки природных и сточных вод полиакриламидом (ПАА) и его анионными и катионными производными в отсутствие и в присутствии минеральных коагулянтов, а также рассмотрены наиболее эффективные способы интенсификации водоочистки.

     1.1 Очистка природной  воды коагулянтами  и флокулянтами

 

     Природная вода является сложной коллоидной системой, содержащей органические и неорганические вещества, а также тонкодиспергированные компоненты. Кроме того, качество природных вод может меняться в зависимости от времени года, химического и дисперсионного состава. Поэтому при производственных испытаниях необходимо учитывать качество исходной воды и индивидуальные особенности водоочистных станций. Влияние этих факторов на водоочистку охарактеризовано в монографиях [1, 3, 4, 15], а влияние коагулянтов – в монографиях [16, 4]. Одной из основных задач в технологии водообработки является выбор оптимальных видов реагентов для конкретного водоисточника, определение условий их применения и необходимых доз. Для очистки природной воды от взвешенных и коллоидно-дисперсных веществ на отечественных водопроводных станциях до последнего времени применялись в основном коагулянт – сульфат алюминия (СА) и флокулянт – ПАА. Отдельные сведения по реагентной обработке воды поверхностных источников с использованием коагулянтов и флокулянтов приведены в работах, опубликованных в последние годы [17 – 19].

     Использованная  технология очистки воды р. Дон на водопроводной станции г. Новочеркасска  предусматривает применение бинарных реагентов – высокомолекулярного  флокулянта Феннопола А-321 с коагулянтами - гидроксохлоридом алюминия (ГОХА) и СА (сульфатом алюминия) [20]. Влияние коагулянтов на мутность очищенной воды при отстаивании показано на рис. 1.1.

 

     

     Рис. 1.1 - Зависимость мутности воды N (мг·л–1) от времени t (мин) при применении гидроксохлорида алюминия (1, 2, 3) и сульфата алюминия (1¢, 2¢, 3¢). 

     Как видно, в широком интервале концентраций ГОХА обеспечивает более полное осветление воды и его оптимальная доза меньше, чем СА. Добавки Феннопола (доза 0.15-0.2 мг·л–1) эффективно осветляли воду при температуре 200С и снижали дозу коагулянта до 2-4 мг·л–1. Аэрирование воды на стадии её смешения с реагентами ускоряло процесс десорбции углекислоты, образующейся вследствие гидролиза коагулянта, и увеличивало завершённость гидролиза. Удаление углекислого газа из сферы реакции гидролиза способствовало образованию плотных хлопьев, быстрому их осаждению и осветлению воды.

     Сопоставление действия СА (К1) и ГОХА (К2) в отсутствие и присутствии ПАА при очистке воды р. Волги на водопроводной станции КУП “Водоканал” г. Казани показано в работе [21]. Результаты испытаний, проведенных в летний период 1999 г., показаны в табл. 1.1.

     Табличные данные свидетельствуют об улучшении  нормативных показателей очищенной  воды при замене СА на ГОХА.

 

      Таблица 1.1 - Влияние сульфата алюминия (К1) и гидроксохлорида алюминия (К2) в сочетании с ПАА на качество очищенной воды в различные дни испытаний [С(AI) = 4 мг·л-1, С(ПАА)=0.15 мг·л-1]. Флокулянт вводили после коагулянта через 2 мин

Цветность, град. Мутность, мг·л-1 Концентрация, мг·л-1
Al Fe Mn
Исходная  вода
62 2,5 0 0,9 0,16
(46)* (3,8) (0) (0,8) (0,14)
Требования  СанПиН
20 1,5 0,5 0,3 0,2
Очищенная вода. Коагулянт К2
20 0,3 0,2 0,2 0,06
(20) (0,5) (0,1) (0,18) (-)
15 0,1 0,1 0,15 0,08
(23) (0,4) (0,1) (0,22) (0,05)
17 0,2 0,2 0,2 0,07
20 0,3 0,2 0,2 0,05
Коагулянт К1
22 0,9 0,2 - -
(18) (0,2) (0,1) (0,15) (0,05)
21 0,7 0,4 - -
(20) (0,2) (0,2) (0,3) (0,04)
21 1,1 0,3 -- -
21 0,8 0,1 - -
22 0,7 0,2 - -
20 0,7 0,2 0,25 0,04
 

     Дополнительное  введение после коагулянтов ПАА  не эффективно сказывалось на водоочистке, поскольку исходная вода в июле 1999 г. не характеризовалась большой  загрязнённостью.

     На  Рублевской водопроводной станции «Мосводоканала» (москворецкий источник) испытана пилотная установка компании «Дегремон» для очистки воды с применением бинарных реагентов - коагулянтов СА и оксихлорида алюминия (ОХА) с анионным флокулянтом ASP25 [сополимер акриламида (АА) с акрилатом натрия (Na-АК) с содержанием ионогенных звеньев α = 5 мол.%] [18]. Испытания проводились в 1997-1998 гг. в течение всех сезонных изменений качества исходной воды. СА оказался более эффективным в период теплой исходной воды, а в зимний период более эффективным являлся ОХА.

     Совместное  использование коагулянтов и  флокулянта эффективно снижало основные характеристики загрязненности воды после отстаивания: мутность - на 80-85%, цветность – на 50-60%, перманганатная окисляемость – на 40-50%, содержание железа – на 90%, аммония – до 0,1 мг·л–1 и содержание фитопланктона - на 97-98% (даже в период бурного цветения воды).

     Влияние интервала между моментом введения СА и анионного флокулянта Магнафлок LT27 на очистку воды рассмотрено в работе [22]. При малой дозе флокулянта (0,02 мг·л–1) и дозе коагулянта 5 мг·л–1интервал времени 30-120 с между дозировкой реагентов не влиял на цветность воды, а при большой дозе флокулянта (0,30 мг·л–1) и той же дозе коагулянта с увеличением интервала времени между дозировками реагентов цветность воды снижалась. Увеличение интервала до момента ввода флокулянта способствовало более полной сорбции гумусовых веществ частицами гидроксида алюминия и последующей сорбции флокулянта (см. табл. 1.2).

     В настоящее время в г. Перми  компанией ЗАО «Москва-Штокхаузен-Пермь» по немецкой технологии налажено производство высокоэффективных флокулянтов Праестолов, которые имеют высокую молекулярную массу (ММ), 100%-ное содержание основного вещества, а также широкий спектр марок неионного, анионного и катионного полимеров, адаптированных к различным видам суспензий и процессам их разделения. Рассмотрим результаты применения Праестолов в отсутствие и в сочетании с коагулянтами для обесцвечивания и очистки природной воды.

 

      Таблица 1.2 - Влияние интервала между  моментами введения сульфата алюминия и Магнафлока LT27 на качество очистки воды (доза коагулянта 5,0 мг·л-1, температура воды 4°С)

Доза  флокулянта, мг·л-1 Интервал  времени, с Очищенная вода
Цветность, град. Мутность, мг·л-1
0 0 23,5 1,3
0,02 30 18,0 0,4
0,02 60 18,0 0,4
0,02 120 18,0 0,4
0,30 30 21,0 0,4
0,30 60 20,0 0,4
0,30 120 19,0 0,4
 

     На  основании модельных исследований на суспензии каолина [23, 24] проведено  сопоставление качества очистки  природной воды различными флокулянтами в сочетании с СА [25]. В качестве флокулянтов применяли аммиачный ПАА производства Завода им. Я.М. Свердлова г. Дзержинск, неионный Праестол 2500 (ПАА), анионные Праестолы 2515 TR, 2530 TR и 2540 TR (сополимеры АА с Na-АК) производства компании ЗАО «Москва-Штокхаузен-Пермь». Характеристики флокулянтов приведены в табл. 1.3.

     Образцы частично гидролизованного ПАА (ГПАА) − В (Г), Е и гидролизованного Праестола (И) получали в производственных условиях на установке для растворения полимера щелочным гидролизом образцов Б, А и З соответственно.  

     Таблица 1.3 - Характеристика флокулянтов

Образец Полимер [h], см3·г-1 Мh×10-6 Содержание  в сополимере звеньев, мол. %
акриламида акрилата натрия
А ПАА 900 4,2 100 0
Б ПАА 580 2,3 100 0
В ГПАА 580 1,3 89 11
Г ГПАА 580 1,2 82 18
Е ГПАА 900 2,2 82 18
Ж Праестол 2500 1550 8,7 97 3
З Праестол 2515 TR 1500 4,4 89 11
И Праестол 2515 TR 1500 4,0 83 17
К Праестол 2530 TR 1800 4,6 80 20
Л Праестол 2540 TR 1600 4,4 72 28

Информация о работе Сточные воды