Спектрофотометрический метод анализа

Автор: Пользователь скрыл имя, 29 Января 2013 в 17:32, контрольная работа

Краткое описание

Спектрофотометрия, метод исследования и анализа веществ, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. По типам изучаемых систем спектрофотометрию обычно делят на молекулярную и атомную. Различают спектрофотометрию в ИК, видимой и УФ областях спектра. Применение спектрофотометрии в УФ и видимой областях спектра основано на поглощении электромагнитного излучения соединениями, содержащими хромофорные (напр., С = С, С=С, С=О) и ауксохромные (ОСН3, ОН, NH2 и др.).

Оглавление

Спектрофотометрический метод анализа:
1)теоретические основы метода………………………………………..……3
2)оборудование……………………………………………………………….7
3)качественный анализ……………………………………………………….9
4)количественный анализ………………………………………..………....11
5)Практическое применение для анализа пищевых продуктов………….13
6)Общая характеристика метода…………………………………………14
Используемая литература………………………………………………………16

Файлы: 1 файл

ФХМА.docx

— 100.07 Кб (Скачать)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ  И НАУКИ РФ УФИМСКИЙ ФИЛИАЛ ГОУ  ВПО ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ

 

 

Кафедра «Пищевая биотехнология

и управление качеством»

 

 

Контрольная работа

по дисциплине «Физико – химические методы анализа»

 

 

 

 

Выполнил: студент группы УКС 3-2

Воронина Е.В.

Шифр 762

Проверил: преподаватель  кафедры

Свирский С.Э.

 

 

Уфа-2011

 

Содержание

Спектрофотометрический  метод анализа:

  1. теоретические основы метода………………………………………..……3
  2. оборудование……………………………………………………………….7
  3. качественный анализ……………………………………………………….9
  4. количественный анализ………………………………………..………....11
  5. Практическое применение для анализа пищевых продуктов………….13
  6. Общая характеристика метода…………………………………………14

Используемая литература………………………………………………………16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Спектрофотометрический  метод анализа:

Теоретические основы метода.

Спектрофотометрия, метод исследования и анализа веществ, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. По типам изучаемых систем спектрофотометрию обычно делят на молекулярную и атомную. Различают спектрофотометрию в ИК, видимой и УФ областях спектра. Применение спектрофотометрии в УФ и видимой областях спектра основано на поглощении электромагнитного излучения соединениями, содержащими хромофорные (напр., С = С, С=С, С=О) и ауксохромные (ОСН3, ОН, NH2 и др.). Поглощение излучения в этих областях связано с возбуждением электронов s-, p-и n-орбиталей основного состояния и переходами молекул в возбужденные состояния: s: s*, n: s*, p: p* и n: p* . Переходы s : s* находятся в далекой УФ области, например у парафинов при ~ 120 нм. Переходы n : s* наблюдаются в УФ области; например, органические соединения, содержащие n-электроны, локализованные на орбиталях атомов О, N, Hal, S, имеют Полосы поглощения при длине волны около 200 нм. Линии, соответствующие переходам p: p*, например, в спектрах гетероциклических соединений проявляются в области около 250-300 нм и имеют большую интенсивность. Полосы поглощения, соответствующие переходам n : p*, находятся в ближней УФ и видимой областях спектра; они характерны для соединений, в молекулах которых имеются такие хромофорные группы, как С = О, C = S, N = N. Так, насыщенные альдегиды и кетоны имеют максимумы поглощения при длине волны около 285 нм. Переходы типа n: p* часто оказываются запрещенными, и соответствующие полосы поглощения обладают очень малой интенсивностью.

Переходы типа p : p* могут сопровождаться переходом электрона с орбитали, локализованной главным образом на одной группе (напр., С=С), на орбиталь, локализованную на другой группе (напр., С=О). Такие переходы сопровождаются переносом электрона с одного атома на другой и соответствующие спектры называются спектрами с переносом заряда. Последние характерны для различных комплексов (например, ароматических соединений с галогенами), интенсивно поглощающих в видимой и УФ областях.

Для ионов переходных металлов и их комплексных соединений характерны переходы с участием d-электронов, а для РЗЭ и актиноидов-переходы с участием f-электронов. Соответствующие соединения в растворе бывают интенсивно окрашенными, причем окраска (спектр поглощения) зависит от степени окисления катиона и устойчивости комплексного соединения. Поэтому спектрофотометрию широко используют при исследовании и анализе комплексных соединений металлов.

Изолированные, не взаимодействующие  между собой хромофоры в молекуле поглощают независимо. В случае к.-л. взаимодействий между ними аддитивность спектров нарушается. По отклонениям от аддитивности можно судить о характере и величине взаимодействия. Поскольку положение полос в спектре определяется как разность энергий основного и возбужденного состояний молекул, можно определять структуру энергетических уровней молекул или по известной схеме энергетических уровней определять положение полос поглощения. Любому электронному состоянию молекул соответствует набор различных колебательных уровней энергии. Колебательная структура полосы, соответствующей переходу между электронными уровнями, может отчетливо проявляться не только в спектрах газов, но и в спектрах некоторых растворов, что дает возможность получать дополнительную информацию о взаимодействии молекул. Спектрофотометрическое исследование спектров молекул в видимой и УФ областях позволяет установить вид электронных переходов и структуру молекул. При этом часто исследуют влияние различных типов замещения в молекулах, изменения растворителей, температуры и других физико-химических факторов.

В ИК области проявляются переходы между колебательными и вращательными уровнями. Среди частот колебаний молекул выделяют так называемые характеристические, которые практически постоянны по величине и всегда проявляются в спектрах химических соединений, содержащих определенные функциональные группы (вследствие чего эти частоты иногда называют групповыми; см. табл. на форзаце 2-го тома). Теория колебаний сложных молекул позволяет расчетным путем предсказать колебательный спектр соединений, то есть определить частоты и интенсивности полос поглощения.

Колебательные спектры молекул чувствительны не только к изменению состава и структуры (т.е. симметрии) молекул, но и к изменению различных физических и химических факторов, например изменению агрегатного состояния вещества, температуры, природы растворителя, концентрации исследуемого вещества в растворе, различных взаимодействий между молекулами вещества (ассоциация, полимеризация, образование водородной связи, комплексных соединений, адсорбция и т. п.). Поэтому ИК спектры широко используют для исследования, качественного и количественного анализа разнообразных веществ.

В ближней ИК области (10000-4000 см-1, или 1-2,5 мкм), где расположены обертоны и составные частоты основных колебаний молекул, полосы поглощения имеют интенсивность в 102-103 раз меньше, чем в средней ИК области (4000-200 см-1). Это упрощает подготовку образцов, т.к. толщина поглощающего слоя может быть достаточно большой (до нескольких мм и более). Экспериментальная техника для работы в этой области относительно проста. Однако чувствительность и селективность определения отдельных соединений невелики. Тем не менее высокое отношение сигнал: шум (до 105) создает хорошие условия для количеств. анализа при содержании определяемого соединения около 1% и выше. Подобные анализы выполняются за 1 мин. В дальней ИК области (200-5 см-1) могут наблюдаться чисто вращательные переходы.

Интенсивность полосы поглощения молекулы определяется вероятностью соответствующего электронного (или колебательного) перехода. Для характеристики интенсивности полосы служит молярный коэффициент поглощения e, определяемый, согласно закону Бугера-Ламберта-Бера, как e = A/Cl, где А = = — lgT= — lg(I/I0), T-пропускание, I0 и I-интенсивности соответствующего падающего и прошедшего через вещество излучения, С-молярная концентрация вещества, поглощающего излучение, l-толщина поглощающего слоя (кюветы), в см. Обычно e<105, в ИК области e<2·103 (л/моль·см). Закон Бугера-Ламберта-Бера лежит в основе количественного анализа по спектрам поглощения.

 

 

 

 

 

 

 

 

 

 

 

Оборудование

Для измерения спектров используют спектральные приборы-спектрофотометры, основные части которого: источник излучения, диспергирующий элемент, кювета с исследуемым веществом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призменный монохроматор или монохроматор с дифракционными решетками. Спектр получают в графической форме, а в приборах со встроенной мини – ЭВМ - в графической и цифровой формах. Графически спектр регистрируют в координатах: длина волны (нм) и (или) волновое число (см-1)-пропускание (%) и (или) оптическая плотность. Основные характеристики спектрофотометров: точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини - ЭВМ (или микропроцессоры) осуществляют автоматизированное управление прибором и различную материальную обработку получаемых экспериментальных данных: статистическую обработку результатов измерений, логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по различным программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т. п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких температурах, для измерения характеристик источников и приемников излучения и т.п.

На рисунках приведены  две основные схемы спектрофотометров, измеряющих спектральный апертурный коэффициент  отражения данного объекта относительно рабочего стандарта с известной спектральной характеристикой:

Измеряемый образец освещается белым светом. Монохроматор расположен в исходящем потоке. Для улучшения характеристик и точности измерений в современных спектрофотометрах также используются двойные монохроматоры

Измеряемый образец освещается монохроматическим светом.

Спектрофотометр

Качественный анализ

Качественный анализ — совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе используют легко выполнимые, характерные химические реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, образование газа и др. Реакции должны быть как можно более селективны и высокочувствительны. Качественный анализ в водных растворах основан на ионных реакциях и позволяет обнаружить катионы или анионы. Основоположником качественного анализа считается Р.Бойль, который ввёл представление о химических элементах как о неразлагаемых основных частях сложных веществ и систематизировал все известные в его время качественные реакции.

Для определения присутствия  веществ, анионов, катионов используются качественные реакции. Проведя их можно подтвердить однозначно их наличие. Эти реакции широко используются при проведении качественного анализа, целью которого является определение наличия веществ или ионов в растворах или смесях.

Примеры качественных реакций  на катионы

Катион

Воздействие и реактив

Наблюдаемая реакция

Li +

Пламя

Карминово-красное окрашивание

Na +

Пламя

Жёлтое окрашивание

K +

Пламя

Фиолетовое окрашивание

Ca2 +

Пламя

Кирпично-красное окрашивание

Sr2 +

Пламя

Карминово-красное окрашивание

Ba2 +

1. Пламя

2.

1. Жёлто-зелёное окрашивание 

2. Выпадение белого осадка, не растворимого в кислотах 

Cu2 +

Вода

Гидратированные ионы Cu2 + имеют голубую окраску

Pb2 +

S2 −

Выпадение чёрного осадка

Ag +

Cl

Выпадение белого осадка

Fe2 +

Гексациано-феррат (III) калия K3[Fe(CN)6]

Выпадение синего осадка


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Количественный анализ

Количественный анализ — совокупность методов аналитической химии для определения количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте.

Количественный анализ позволяет  установить элементный и молекулярный состав исследуемого объекта или  содержание отдельных его компонентов.

В зависимости от объекта  исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементарный анализ, задача которого — установить, в каком количестве содержатся элементы (ионы) в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Классическими методами количественного  анализа являются гравиметрический (весовой) анализ и титриметрический (объемный) анализ.

Гравиметрический анализ (весовой анализ) — важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Измерительным прибором служат аналитические весы. Результаты анализа выражают обычно в процентах. Гравиметрический анализ сыграл большую роль при становлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др., применяется при определении химического состава различных объектов (горных пород и минералов.

Титриметрический анализ (титрование) — методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объема раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. инералов), при установлении качества сырья и готовой продукции и т. д.

Титриметрический анализ использует различные типы химических реакций:

  • нейтрализации (кислотно-основное титрование) — нейтрализация — это реакции с изменением pH растворов.
  • окисления-восстановления (перманганатометрия, иодометрия, хроматометрия) — реакции, которые происходят с изменением окислительно-восстановительных потенциалов в системе титрования.
  • осаждения (аргентометрия) — реакции, протекающие с образованием малорастворимого соединения, при этом изменяются концентрации осаждаемых ионов в растворе.
  • комплексообразования (комплексонометрия) — реакции, основанные на образовании прочных комплексных соединений ионов металлов (всех, кроме одновалентных) с комплексоном III (двунатриевой солью этилендиаминтетрауксусной кислоты), при этом изменяются концентрации ионов металлов в титруемом растворе.

Информация о работе Спектрофотометрический метод анализа