Автор: Пользователь скрыл имя, 18 Октября 2011 в 19:54, реферат
у электродом и находящимся с ним в контакте электролитом. Возникновение электродный потенциал обусловлено пространственным разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя. На границе между металлическим электродом и раствором электролита...
Электродные потенциалы. Гальванические элементы. ЭДС
Электролиз. Закон электролиза(законы Фарадея)
Коррозия, виды, способы защиты
Окислительно-восстановительные реакции
Литература
В
производственных условиях используют
также электрохимический способ
– обработку изделий переменным
током в растворе фосфата цинка при
плотностях тока 4 А/дм2 и напряжении
20 В и при температуре 60...700C. Фосфатные
покрытия представляют собой сетку плотносцепленных
с поверхностью фосфатов металлов. Сами
по себе фосфатные покрытия не обеспечивают
надежной коррозионной защиты. Преимущественно
их используют как основу под окраску,
обеспечивающую хорошее сцепление краски
с металлом. Кроме того, фосфатный слой
уменьшает коррозионные разрушения при
образовании царапин или других дефектов.
Для защиты металлов от коррозии используют
стекловидные и фарфоровые эмали – силикатные
покрытия, коэффициент теплового расширения
которых должен быть близок к таковому
для покрываемых металлов.
Эмалирование осуществляют нанесением на поверхность изделий водной суспензии или сухим напудриванием. Вначале на очищенную поверхность наносят грунтовочный слой и обжигают его в печи. Далее наносят слой покровной эмали и обжиг повторяют. Наиболее распространены стекловидные эмали – прозрачные или заглушенные. Их компонентами являются SiO2 (основная масса), B2O3, Na2O, PbO. Кроме того, вводят вспомогательные материалы: окислители органических примесей, оксиды, способствующие сцеплению эмали с эмалируемой поверхностью, глушители, красители. Эмалирующий материал получают сплавлением исходных компонентов, измельчением в порошок и добавлением 6...10% глины. Эмалевые покрытия в основном наносят на сталь, а также на чугун, медь, латунь и алюминий.
Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу вследствие чего и начинается коррозия.
Для защиты чугунных и стальных водяных труб от коррозии используют цементные покрытия. Поскольку коэффициенты теплового расширения портландцемента и стали близки, а стоимость цемента невысокая, то он довольно широко применяется для этих целей. Недостаток портландцементных покрытий тот же, что и эмалевых, – высокая чувствительность к механическим ударам.
Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами: кратковременным погружением в ванну с расплавленным металлом (горячее покрытие), электроосаждением из водных растворов электролитов (гальваническое покрытие), напылением (металлизация), обработкой порошками при повышенной температуре в специальном барабане (диффузионное покрытие), с помощью газофазной реакции, например
3CrCl2 + 2Fe – [10000C] > 2FeCl3 + 3Cr (в сплаве с Fe).
Имеются и другие методы нанесения металлических покрытий, например, разновидностью диффузионного способа защиты металлов является погружение изделий в расплав хлорида кальция CaCl2, в котором растворены наносимые металлы.
В
производстве широко используют химическое
нанесение металлических
В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл. Чаще всего ему подвергают изделия из меди.
Металлические
покрытия делят на две группы: коррозионностойкие
и протекторные. Например, для покрытия
сплавов на основе железа в первую
группу входят никель, серебро, медь, свинец,
хром. Они более электроположительны
по отношению к железу, т.е. в электрохимическом
ряду напряжений металлов стоят правее
железа. Во вторую группу входят цинк,
кадмий, алюминий. По отношению к железу
они более электроотрицательны, т.е. в
ряду напряжений находятся левее железа.
В повседневной жизни человек чаще всего
встречается с покрытиями железа цинком
и оловом.
Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки. И то и другое получают главным образом протягиванием листа железа через расплав соответствующего металла. Для большей стойкости водопроводные трубы и арматуру из стали и серого чугуна часто подвергают оцинковыванию также окунанием в расплав данного металла. Это резко повышает срок их службы в холодной воде. Интересно, что в теплой и горячей воде срок службы оцинкованных труб может быть даже меньше, чем неоцинкованных.
Испытания показали, что оцинкованная жесть при толщине покрытия в 0,03 мм, что соответствует 0,036 г/см2 при покрытии с двух сторон, на крышах домов служит примерно 8 лет. В промышленной атмосфере (в атмосфере больших городов) она же служит всего лишь четыре года. Такое уменьшение срока службы связано с воздействием серной кислоты, содержащейся в воздухе городов.
Покрытия из цинка и олова (так же как и других металлов) защищают железо от коррозии при сохранении сплошности. При нарушении покрывающего слоя (трещины, царапины) коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется «работой» гальванического элемента железо – цинк и железо – олово. Трещины и царапины заполняются влагой и образуются растворы. Поскольку цинк более электроотрицателен, чем железо, то его ионы будут преимущественно переходить в раствор, а остающиеся электроны будут перетекать на более электроположительное железо, делая его катодом.
К железу-катоду будут подходить ионы водорода (вода) и разряжаться, принимая электроны. Образующиеся атомы водорода объединяются в молекулу H2. Таким образом, потоки ионов будут разделены и это облегчает протекание электрохимического процесса. Растворению (коррозии) будет подвергаться цинковое покрытие, а железо до поры до времени будет защищено.
Цинк электрохимически защищает железо от коррозии. На этом принципе основан протекторный метод защиты от коррозии металлических конструкций и аппаратов. Английское слово «претект» – означает защищать, предохранять. При протекторной защите к конструкции, к аппарату через проводник электрического тока присоединяется кусок более электроотрицательного металла. Его можно поместить прямо в паровой котел.
При
наличии влаги, а точнее в присутствии
электролита начнет действовать
гальванический элемент. В нем будет
растворяться более электроотрицательный
металл, а конструкция или аппарат
оказываются катодно защищенными. Защита
будет действовать до тех пор, пока полностью
не растворится анод – более электроотрицательный
металл.
Вероятно, впервые катодную защиту применил
знаменитый английский ученый Дэви (1824).
Для защиты медной облицовки морских судов
он рекомендовал использовать «жертвенные»
аноды из железа, которые присоединялись
снаружи к корпусу судна. Скорость коррозии
медной облицовки в морской воде при этом,
действительно, значительно снизилась.
Однако вместо одной неприятности появилась
другая. Ионы меди Cu2+ являются биоцидными
(ядовитыми) для микроорганизмов. Поскольку
медный корпус оказался защищенным и ионы
меди перестали переходить в морскую воду,
то корпус оказался беззащитным от микроорганизмов.
Они стали поселяться на корпусе судна,
что приводило к обрастанию ракушками.
В
результате скоростные характеристики
судна значительно снизились. Периодическая
очистка днища судна от ракушек
стоила больших затрат.
С протекторной защитой весьма сходна
катодная защита металлов от коррозии.
Можно сказать, что катодная защита является
модификацией протекторной защиты. В данном
случае конструкция или корпус корабля
присоединяются к катоду источника постоянного
тока и тем самым защищаются от растворения.
При наличии дефектов на белой жести процесс коррозии существенно иной, чем оцинкованного железа. Поскольку олово электроположительнее железа, то растворению подвергается железо, а катодом становится олово. В результате при коррозии слой олова сохраняется, а под ним активно корродирует железо.
Считают, что нанесение олова на поверхность металлов (лужение) было освоено уже в бронзовом веке. Этому способствовала низкая температура плавления олова. В прошлом особенно часто проводили лужение медной и латунной посуды: тазов, котлов, кувшинов, самоваров и др. Продукты коррозии олова безвредны для человека, поэтому луженая посуда широко применялась в быту. В XV в. во многих странах Европы (Германии, Австрии, Голландии, Англии и Франции) широко использовалась столовая посуда, изготовленная из олова. Имеются сведения, что в рудных горах Богемии оловянные ложки, чашки, кувшины, тарелки начали изготавливать уже в XII в.
Луженое железо до сих пор в больших количествах идет на изготовление тары для хранения пищевых продуктов (консервные банки). Однако в последние годы для этой цели все шире применяется алюминиевая фольга. Посуда из цинка и оцинкованного железа не рекомендуется для хранения пищевых продуктов. Несмотря на то, что металлический цинк покрыт плотной оксидной пленкой, он все же подвергается растворению. Хотя соединения цинка относительно мало ядовиты, в больших количествах они могут оказать вредное действие.
Говоря о металлической таре, уместно отметить, что патент на способ сохранения пищевых продуктов в жестяных банках был выдан парижскому повару Н.Ф. Апперу в 1810 г. Он запаивал продукты в банках из белой жести, а затем нагревал в кипящей соленой воде.
Современная техника включает детали и конструкции из различных металлов и сплавов. Если они находятся в контакте и попадают в раствор электролитов (морская вода, растворы любых солей, кислот и щелочей), то может образоваться гальванический элемент. Более электроотрицательный металл становится анодом, а более электроположительный – катодом.
Генерирование тока будет сопровождаться растворением (коррозией) более электроотрицательного металла. Чем больше разность электрохимических потенциалов контактирующих металлов, тем больше скорость коррозии. Почти все книги, особенно популярные, по коррозии металлов описывают случай, произошедший в 20-х годах текущего столетия в США. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее днище было обшито дорогим монель металлом (сплав 70% никеля и 30% меди), а киль, форштевень и раму руля изготовили из стали. В морской воде в подводной части яхты образовался гальванический элемент с катодом из монель металла, а анодом из стали. Он настолько энергично работал, что яхта еще до завершения отделочных работ вышла из строя, ни разу не побывав в море. Интересно, что яхте было дано имя «Зов моря».
Иногда
зубные коронки, изготовленные из различных
металлов (золота и стали) и близко
расположенные друг к другу, доставляют
их носителям неприятнейшие
4)Окислительно-
ОКИСЛИТЕЛЬНО-
Первоначально окислением называли только реакции в-в с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует.
В неоргонической химии окислительно-восстановительные реакции формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого (окислителя), напр.:
Информация о работе Окислительно-восстановительне свойства и электрохимические процессы