Автор: Пользователь скрыл имя, 02 Февраля 2013 в 16:30, реферат
Термин коррозия происходит от латинского "corrosio", что означает разъедать, разрушать. Этот термин характеризует как процесс разрушения, так и результат.
Среда в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой.
В случае с металлами, говоря об их коррозии, имеют ввиду нежелательный процесс взаимодействия металла со средой. Физико-химическая сущность изменений, которые претерпевает металл при коррозии является окисление металла.
Развитие трещины, которая вызывает разрушение металла, не обязательно происходит в том же месте, где появилась первая мелкая трещина. Форма образца и характер деформации могут быть такими, что основная трещина развивается на некотором расстоянии от первоначально появившейся небольшой трещины.
Ирвин и соавторы характеризуют процесс развития трещины следующим образом. Первоначальное зарождение трещин происходит на разрозненных, не связанных между собой участках с большими растягивающими напряжениями. Мелкие разрозненные трещины, соединяясь, образуют одну трещину. Как отмечается, процесс трещинообразования начинается на ослабленных участках металла, и первые стадии его сопровождаются пластической деформацией. Развитие трещины носит прерывистый характер, и это является основным свойством быстрого трещинообразования.
Быстрое начало и прекращение
отдельных процессов
Изложенное рассмотрение
процесса возникновения и развития
трещины более точно
1. Трещины не возникают
и не развиваются под
2. Более высокие напряжения, особенно напряжения, близкие к пределу текучести, вызывают более высокую концентрацию напряжений и соответственно уменьшают устойчивость металла против растрескивания.
3. Для создания
достаточной концентрации
4. В том случае, когда разрушение металла происходит почти сразу после образования первоначальной трещины, время до растрескивания зависит от времени, необходимого для зарождения мелких коррозионных трещин. Важным фактором является также состояние поверхности. При разрушении, включающем ряд повторных циклов процесса растрескивания, общее время до разрушения определяется как суммарное время образования серии коррозионных трещин. Не наблюдается значительного отличия во времени до разрушения образцов, нагруженных в течение всего испытания, и образцов, нагруженных незадолго до разрушения; время, необходимое для коррозионного растрескивания, не зависит существенно от условий создания напряженного состояния металла.
5. Доказательством того, что наибольшее влияние приложенные напряжения оказывают незадолго до разрушения, служит самопроизвольное растрескивание металла после зарождения первоначальной трещины. Если процесс растрескивания происходит за счет образования серии мелких трещин и по мере развития трещины металл приближается к неустойчивому состоянию, то при наличии деформированных участков металлапроизойдет самопроизвольное развитие трещины и полное разрушение металла.
6. Катодная защита
препятствует развитию
Полагают, что если развитие трещины достигнет такого значения, что создаются условия для самопроизвольного растрескивания, то применение катодной защиты не окажет никакого влияния.
7. Если время до растрескивания относительно мало и развивается только одна или несколько трещин, то не наблюдается существенного отличия в коррозии (в количестве металла, переходящего в раствор) напряженных и ненапряженных образцов, как показал, например, Эделеану для сплава А1—7% Мg, так как развитие трещин идет практически только за счет механического разрушения. С другой стороны, процесс химического разрушения приводит к переходу в раствор измеримого количества металла, но переход металла в раствор не будет существенно зависеть от времени до разрушения.
8. Предложенный механизм растрескивания согласуется с наблюдаемым явлением, обнаруживающим одинаковую скорость развития образовавшихся трещин в материале, подверженном коррозионному растрескиванию, и в сравнительно устойчивом материале. Зависимость устойчивости металла против коррозионного растрескивания от его структуры и коррозионной среды в значительно мольшей степени проявляется в первый период зарождения локального разрушения, чем при последующей стадии развития трещин.
9. Чем меньше
размер зерна металла, тем
В случае межкристаллитного растрескивания большое значение имеет выделение растворенных атомов по границам зерен, так как предполагается, что адсорбция растворенных атомов по границам зерен уменьшает энергию границ зерен и снижает напряжения, необходимые для того, чтобы вызвать хрупкое разрушение (т. е. снижает работу, необходимую для образования новой поверхности). Любой адсорбционный процесс на участках металла с несовершенной структурой, который уменьшает работу, необходимую для образования новой поверхности, значительно увеличивает тенденцию таких участков к трещинообразованию при наличии напряжений.
Очевидно, следует предположить, что хрупкое межкристаллитное растрескивание сплавов вызвано содержанием по границам зерен интерметаллических фаз; в этом случае существуют очень благоприятные условия для развития по границам зерен местной коррозии, а развитие хрупкого разрушения происходит за счет интерметаллической фазы. Для однородных твердых растворов, в которых имеет место межкристаллитное растрескивание (например, в а-латуни), определяющим фактором является адсорбция или выделение растворенных атомов по границам зерен.
12 Общие закономерности явления коррозийного растрескивания
Вполне очевидно, что сплавы, основу которых составляют благородные металлы, являются наиболее устойчивыми против коррозионного растрескивания, так как легирующие компоненты таких сплавов всегда менее благородий. Кроме того, для таких сплавов ограничено число коррозионных сред, в которых может происходить растрескивание. С другой стороны, для такого очень активного металла, как магний, все легирующие компоненты более благородны, поэтому магниевые сплавы сильно подвержены коррозионному растрескиванию. Для магния даже вода является активной коррозионной средой.
Среди специальных групп сплавов, не подверженных коррозионному растрескиванию, можно отметить сплавы золота, палладия и платины.
Однако для сплавов
серебра условия для
Медные сплавы более подвержены коррозионному растрескиванию. Число более благородных легирующих компонентов для меди не меньше, чем для серебра, но основная опасность обусловлена тем, что в любой среде, содержащей хотя бы незначительное количество аммиака, происходит коррозионное растрескивание медных сплавов. Все сплавы, содержащие небольшое количество золота, использующиеся в производстве ювелирных изделий, являются сплавами на медной основе. Из всех использующихся сплавов меди с золотом только один сплав, содержащий 75 вес.% золота, не подвержен коррозионному растрескиванию. Для остальных сплавов их устойчивость зависит от коррозионной среды и предела устойчивости.
Предел устойчивости для сплавов системы Сu—Аu в растворе аммиака составляет примерно 20 ат.% Аu, так что сплавы, содержащие 50 вес. % золота, не подвержены коррозионному растрескиванию в этой среде. Но в 2 %-ом растворе FeС3 такие сплавы, содержащие меньше 35 ат.% Аu, подвержены коррозионному растрескиванию. Поэтому в ювелирном деле следует применять сплавы, содержащие не менее 58,5 вес.% золота, с использованием их при возможно более низких напряжениях. Однако в случае технического использования, включающего наличие в сплаве внутренних напряжений и воздействие коррозионной среды (например, изготовление перьев для авторучек), такие сплавы недостаточно устойчивы. Но если часть меди в этих сплавах заменять серебром (по весу), как это часто делается на практике, то атомная доля золота в сплаве увеличивается и соответственно увеличивается сопротивление коррозионному растрескиванию.
Особое внимание следует уделить такому важному сплаву, как латунь, где медь легирована менее благородным компонентом (цинком) и поэтому, согласно правилам, не должна подвергаться коррозионному растрескиванию. Однако практически очень часто происходит сезонное растрескивание латуни. Тщательное исследование показывает, что коррозионное растрескивание латуни происходит только в аммиачных средах, тогда как раствор FeС3, концентрированные кислоты НС1 и НNОз вызывают только общую поверхностную коррозию.
Это отклонение от правил вызвано особым поведением меди в аммиачной среде, в которой образуются комплексные ионы с медью, что вызывает характерный тип коррозии, не свойственной другим средам. В растворах цианистого калия также образуются комплексные ионы, но в отличие от аммиака эта среда не вызывает коррозионного растрескивания сплавов систем Сu—Аu и Сu—Au, хотя она, подобно царской водке, вызывает коррозию золота.
Все остальные технически
пригодные металлы менее