Автор: Пользователь скрыл имя, 30 Апреля 2012 в 18:44, реферат
Молекулы, валентно насыщенные в обычном понимании (такие как CO2, H2O, I2, Ne и др.), взаимодействуют между собой, о чем свидетельствует конденсация реальных газов (идеальный газ не конденсируется ни при каких условиях). Силы, действующие между молекулами газа и вызывающие отклонение газов от идеальности, называют силами Ван-дер-Ваальса, по имени ученого, который впервые учел взаимное притяжение и отталкивание молекул при выводе уравнения состояния реальных газов.
Введение 3
§1Ван-дер-ваальсовые взаимодействия 4
Уравнение Ван-дер-Ваальса
4
Ориентационные взаимодействия Ван-дер-Ваальса (эффект Кезома)
6
Индукционные взаимодействия Ван-дер-Ваальса (эффект Дебая)
8
Дисперсионные взаимодействия Ван-дер-Ваальса (эффект Лондона)
9
Ван-дер-ваальсово отталкивание (эффект Паули)
12
§2Водородные связи 13
Выводы 17
Литература 19
Как уже указывалось, энергия водородной связи обычно значительно меньше энергии ковалентной связи. Поэтому повышение температуры приводит к разрыву водородных связей; однако этот процесс как правило, растянут на сравнительно широкий интервал температур; в карбоновых кислотах, например, ассоциация сохраняется даже при их парообразовании. Следует однако заметить, что при более существенном повышении температуры разрушаться начинают и донорно-акцепторные, а также ковалентные связи, разрушение химических связей является основной возможной причиной образования, так называемой, горячей плазмы.
Если взять ряд сходных веществ, то с ростом молекулярного веса следует ожидать увеличения их температур плавления и кипения, а также теплот парообразования; однако как видно изтабл. 2, при переходе от HF к HCl и от H2O к H2S происходит резкое падение численного значения указаных свойств.
Таблица 2
Температура плавления, температура кипения и теплота парообразования (в точке кипения)
для гомологов воды и фтороводорода.
Вещество | Температура плавления, oC | Температура кипения, oC | Теплота парообразования, ккал/моль |
H2O | 0,0 | 100,0 | 9,75 |
H2S | -85,5 | -60,7 | 4,5 |
H2Se | -64,8 | -41,5 | 5,1 |
H2Te | -49,0 | -2,0 | 5,8 |
HF | -83,1 | -19,5 | 7,2 |
HCl | -112,0 | -84,9 | 3,6 |
HBr | -87,0 | -66,8 | 3,9 |
HI | -50,9 | -39,4 | 4,2 |
Это объясняется тем, что между молекулами HF и между молекулами H2O существуют сильные водородные связи. Масштаб этого эффекта виден из рис. 4.
Наиболее удобным индикатором водородной связи является температура кипения, т.к. ее легко измерить. Определив температуру какого-либо спирта ROH и соответствующего ему меркаптана RSH, можно убедиться, что для ROH она больше, чем для RSH. Простые эфиры даже с большим молекулярным весом, чем спирты, более летучи. Если бы вода не была ассоциированной жидкостью, то она имела бы температуру плавления около -100oC и температуру кипения около -80oC (что легко установить с помощью чертежа подобного рис.4).
Если воспользоваться методом сравнительного расчета и сопоставить температуру кипения в рядах HЭ (Э=F, Cl, Br, I)иH2Э (Э=O, S, Se, Te) (рис. 5), то из характера отклонения точки (HF; H2O) и из того факта, что молекулы водяного пара почти не ассоциированы, можно заключить, что в отличие от воды ассоциация фтороводорода сохраняется и в паровой фазе (в противном случае следовало бы ожидать расположения на прямой всех четырех точек); это свидетельствует о большей прочности связи H……F по сравнению со связью H……O. Cделанный вывод можно подтвердить и заметно меньшей разницей в теплотах парообразования HF и HCl по сравнению с разницей в теплотах парообразования H2O и H2S (см. табл. 2). Действительно, в парах фтороводорода существуют молекулы (HF)n ,имеющие следующую структуру:
И хотя для большинства частиц n=4, но есть и частицы, для которых n=5 и 6.
Рассмотренные выше примеры относились случаю межмолекулярной водородной связи, но нередко водородная связь объединяет части одной и той же молекулы, т.е. является внутримолекулярной. Это характерно для многих органических веществ; именно посредством водородных, а не химических, ионных или ван-дер-ваальсовых связей формируются вторичная структура белков, а также структура гидратных оболочек у минеральных солей и органических веществ. Водородные связи играют основную роль в формировании также третичной и четвертичной структуры глобулярных белков. Предполагают, что действие памяти связано с хранением информации в конфигурациях с водородными связями.
В большинстве случаев образования внутримолекулярной водородной связи водород входит в плоское шестичленное кольцо; если возникновение такого цикла затруднено, то внутримолекулярная водородная связь обычно не образуется. Вот несколько примеров образования внутримолекулярной водородной связи:
Если у о-нитрофенола водородная
связь – внутримолекулярная, то у n-нитрофенола
она межмолекулярная, так как в последнем
веществе водород удален от кислорода
нитрогруппы. Константа диссоциации2, 6-
Учет влияния водородной связи позволил осмыслить многие факты. Так, образование солей типа KHF2иNaHF2 объясняется существованием прочного иона HF2‾‾, образующегося в результате процесса ; действительно, при н.у. равновесие смещено вправо (K298=5,1); энергия водородной связи в F—H……F– составляет 27 ккал/моль. Влияние водородной связи делает понятным и то обстоятельство, что фтороводородная кислота в отличие от ее аналогов (HCl, HBr, HI) не является сильной кислотой; ее константа диссоциации равна 7,2·10-4.
Важную роль водородные связи играют в структуре воды и льда. На рис. 6показан фрагмент структуры льда Ι. Каждый атом кислорода в этой структуре тетраэдрически связан с четырьмя другими атомами кислорода, между ними располагаются атомы водорода; два атома водорода соединены с данным атомом кислорода полярной ковалентной связью (d=1,011Ǻ), два других — водородной связью (d=1,752 Ǻ; EO…H≈ 5ккал/моль), т.е. входят в состав двух других молекул H2O. Создается ажурная структура, далекая от плотной упаковки. Отсюда небольшая плотность и значительная рыхлость льда. При плавлении льда водородные связи частично разрушаются (примерно на 10%); это несколько сближает молекулы, поэтому вода немного плотнее льда. Нагревание воды, с одной стороны, приводит к ее расширению, т.е. к увеличению объема, с другой стороны, оно вызывает дальнейшее разрушение водородных связей и тем самым уменьшение объема. В результате плотность воды проходит через максимум (при 4oC).
Водородная связь играет большую роль в процессах растворения, так как растворимость зависит от способности вещества создавать водородные связи с растворителем; при этом часто образуются продукты их взаимодействия — сольваты. В качестве примера можно оказать на растворение спиртов в воде. Этот процесс сопровождается выделением теплоты и уменьшением объема, т.е. признаками соответствующими образованию соединений. Отсутствием влияния водородной связи можно объяснить и те случаи, когда полярные соединения нерастворимы в воде. Так, полярный йодистый этил хорошо растворяет неполярный нафталин, а сам не растворяется в таком полярном растворителе, как вода.
Вопрос о природе водородной связи окончательно не решен. Ясно, что здесь играют роль и междипольное взаимодействие, и эффект поляризации, и донорно-акцепторный механизм. Трудность квантово-механического расчета водородной связи обусловлена тем, что погрешность вычисления значительно больше величины энергии водородной связи. По-видимому наиболее надежные результаты можно ожидать от метода молекулярных орбиталей.
Водородная
связь встречается почти
Выводы
Из всего рассмотренного материала можно заключить, что между физическими связями и химическими связями нельзя провести четкую границу. Физические и химические связи имеют общую физическую природу (электрическую). Кроме того, один и тот же эффект (эффект исключения Паули) считается поддерживающим устойчивость химической связи в пределах молекулы (или ее участка) либо устойчивость физической связи в пределах фазы только в зависимости от того считаются ли взаимодействующие атомы связанными химически или несвязанными химически. По длине и энергии связи физические и химические связи тоже граничат вплотную.
Единственным
фактором который позволяет отделить
физические связи химических может
быть лишь насыщаемость/ненасыщаемость
связи. Однако, и в этом случае разделение
связей на химические и физические
будет нестрогим вследствие существования
водородной (иногда ее также называют
протонной) связи, насыщаемость которой
нечетко выражена (вследствие того, что
водородная связь является переходной
между различными механизмами химического
и межмолекулярного взаимодействия практически
по всем параметрам ее уже сейчас часто
относят как к первым так ико вторым). Кроме
того, такое разделение связей на физические
и химические требует отнесения также
ионной связи к физическим, а не к химическим
связям, вследствие ее явной ненасыщаемости.
Литература