Автор: Пользователь скрыл имя, 15 Марта 2012 в 19:46, реферат
1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.
Изменение числа эритроцитов.
Повышение числа Э и их массы (гематокрит) в целом указывает на эритроцитоз, который может быть первичным (поражение эритропоэза, заболевания ситемы крови) или вторичным. Вторичный эритроцитоз чаще всего развивается вследствие кислородного голодания тканей и наблюдается при легочных заболеваниях, врожденных пороках сердца, при гиповентиляции, пребывании на высоте, накоплении карбоксигемоглобина при курении, молекулярных изменениях гемоглобина, нарушении выработки эритропоэтина вследствие образования опухоли или кисты. Относительное повышение Э определяется при гемоконцентрации, например, при ожогах, диарее, приеме диуретиков и т. д.
Понижение НЬ и Э является прямым непосредственным указанием на анемию (малокровие). Острая кровопотеря до одного литра принципиально не влияет на морфологию Э. Если в отсутствие кровопотери число Э снижается, то, естественно, следует предположить нарушение эффективности эритропоэза. Эффективный (действительный) эритропоэз может быть оценен с помощью следующих тестов: определения уровня утилизации железа Э, определения количества ретикулоцитов и скорости их созревания, измерения продолжительности жизни эритроцитов и других функциональных характеристик, определяющих их полноценность.
Строение и синтез.
Гемоглобин это гемопротеид. Это неферментный белок имеющий интересную структуру. В его состав входит 4 полипептидные цепи. Есть несколько видов гемоглобина: гемоглобин А есть и фетальный гемоглобин в состав которого входят несколько иные цепи.
Фетальный гемоглобин есть у любого человека, другое дело, что у плода это основной гемоглобин.
Обычный гемоглобин взрослых содержит 2 парные и 2 парные цепи каждая полипептидная цепь соединяется с гемом. 4 цепи - 4 гема.
Миоглобин похожий по структуре белок - мышечный белок, который в отличии от гемоглобина состоит из 1 полипептидной цепи и 1-го гема. Имеет значимость в доставке кислорода внутри клетки до митохондрий.
В процессе присоединения кислорода происходит конформационные изменения субъединиц - положительная кооперативность. Эти конформационные изменения имеют огромную значимость в процессе связывания кислорода в легких и в процессах его отдачи.
Гем: Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи. Цитохромы отличаются от гема составом боковых цепей, но порфириновое ядро у них такое же.
Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей (лаки, анилиновые окраски). В крови всегда присутствует метгемоглобин не выше 2%. Метгемоглобин - производное гемоглобина не способен транспортировать кислород.
Восстановление гемоглобина происходит за счет фермента -метгемоглобинредуктазы. У детей этот фермент крайне неактивен.
В боковой цепи содержится 4 метильные группы, 2 винильных и 2 остатка пропионовой кислоты.
Распад гемоглобина происходит достаточно быстро. За сутки синтезируется 6 грамм. Валовый синтез гемоглобина достаточно высок. Гемоглобин в ходе функционирования эритроцита может превращаться в метгемоглобин, могут происходить различные процессы диструктирующие липидный бислой мембран, поскольку перикисное окисление мембран эритроцитов происходит.
Синтез глобина идет на рибосомах, а синтез гема идет из соединений заменимых:
во-первых для синтеза нужна заменимая аминокислота глицин, может образовываться
из липидов, из продуктов распада углеводов, из других аминокислот и тд.
во-вторых сукцинилКоА, образуется в циклу Кребса, в него превращаются углеродные
скелеты нескольких аминокислот.
Через аминоорнитиновую кислоту образуется так называемая эпсилонаминолевулиновая кислота, далее идет реакция дегидротации и циклизация с образованием порфобилиногена1.
Порфириновое ядро вместе с боковыми цепями носит название протопорфирин9. Происходящие дальше процессы приводят к образованию этого соединения. Потом железо присоединяется с образованием гемоглобина. Синтез требует затрат энергии и на любом из этапов этот синтез может нарушаться.
Что вам здесь нужно знать? Гем синтезируется, требует затрат энергии, синтез идет из простых достаточно соединений.
Гипоксии.
Гипоксия (кислородное голодание) — состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического-окисления.
1. Гипоксия вследствие понижения РО2, во вдыхаемом воздухе (экзогенная гипоксия).
2. Гипоксия при патологических процессах, нарушающих снабжение тканей кислородом при нормальном содержании его в окружающей среде. Сюда относятся следующие типы: а) дыхательный (легочный); б) сердечно-сосудистый (циркулятор-ный); в) кровяной (гемический); г) тканевый (гистотоксический): д) смешанный.
Гипоксия вследствие понижения парциального давления кислорода во вдыхаемом воздухе. Этот вид гипоксии возникает главным образом при подъеме на высоту. Может наблюдаться и в тех случаях, когда общее барометрическое давление нормально, но РО2, понижено, например при авариях в шахтах, неполадках в системе кислородообеспечения кабины летательного аппарата, в подводных лодках и т.п., а также во время операций при неисправности наркозной аппаратуры,
При экзогенной гипоксии развивается гипоксемия, т.е. уменьшается парциальное давление кислорода в артериальной крови и снижается насыщение гемоглобина кислородом.
Гипоксия при патологических процессах, нарушающих снабжение или утилизацию кислорода тканями.
Дыхательный (легочный) тип гипоксии возникает в связи с альвеолярной гиповентиляцией, что может быть обусловлено нарушением проходимости дыхательных путей (воспалительный процесс, инородные тела, спазм), уменьшением дыхательной поверхности легких (отек легкого, пневмония и т. д.).Обычно нарушается также выведение из организма углекислого газа.
Сердечно-сосудистый (циркуляторный) тип гипоксии наблюдается при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Для газового состава крови в типичных случаях циркуляторной гипоксии характерны нормальные напряжение и содержание кислорода в артериальной крови, снижение этих показателей в венозной крови и высокая артерио-венозная разница по кислороду.
Кровяной (гемический) тип гипоксии возникает в результате уменьшения кислородной емкости крови при анемиях, обусловленных значительным уменьшением эритроцитной массы или резким понижением содержания гемоглобина в эритроцитах. В этих случаях Ро, в венозной крови резко снижено.
Гемическая гипоксия наблюдается также при отравлении оксидом углерода (образование карбоксигемоглобина) и метгемоглобинообразователями (метгемогло-бинемия), а также при некоторых генетически обусловленных аномалиях гемоглобина.
Тканевый (гистотоксический) тип гипоксии обычно обусловлен нарушением способности тканей поглощать кислород из крови. Утилизация кислорода тканями может затрудняются в результате угнетения биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембранных структур клетки. Типичным примером тканевой гипоксии может служить отравление цианидами.
Гемоглобинурия
Гемоглобинурии — обусловлены внутрисосудистым гемолизом эритроцитов.
Первичные — это холодовая, маршевая пароксизмальная.
Вторичные — это переливание несовместимой крови, отравление сульфаниламидами, анилиновыми красками, грибами и т. д.
Гемоглобинурия - обнаружение в моче крови в виде растворенного кровяного пигмента
Гематурия - обнаружение в моче крови в форме красных кровяных клеток.
Почечная гематурия - основной симптом почечного нефрита
Внепочечная гематурия - при воспалительных процессах или травмах мочевых путей.
Глюкоза крови. Содержание глюкозы в крови, регуляция содержания глюкозы в крови. Причины изменения уровня глюкозы в крови и появление ее в моче.
Содержание
Глюкоза - 3,3-5,5 мМ/л
кишечник распад гликогена перевращение др. моносах. глюконеогинез
ГЛЮКОЗА
окисление
до лактата
анаэроб.
синтез синтез синтез синтез синтез
липидов азотосодерж. др. моносахар. аминокислот гликогена
Транспорт глюкозы из крови в клетки путем облегченной диффузии, т.е. по градиенту концентрации с участием белка-переносчика. Эффективность работы этого транспорта в клетках большинства органов и тканей зависит от инсулина. Оказывается инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы увеличивая количество белка-переносчика за счет дополнительного его поступления из цитозоля в мембрану. Основная масса клеток является инсулин зависимыми. Исключение составляют эритроциты, гепатоциты и клетки нервной ткани. Поступление в эти клетки глюкозы не зависит от инсулина, поэтому их называют инсулин независимые клетки.
С другой стороны быстрое превращение глюкозы в глюкозу-6-фосфат позволяет поддерживать крайне низкую концентрацию глюкозы в клетках. Тем самым сохраняется градиент концентрации глюкозы между внеклеточной жидкостью и клеткой.
МОБИЛИЗАЦИЯ ГЛИКОГЕНА.
Гликоген как резерв глюкозы накапливается в клетках в постадсорбционном периоде (после всасывания) и расходуется затем.
Расщепление гликогена в печени получило название - мобилизация гликогена. Происходит за счет фермента гликоген-фосфорилазы. Он катализирует расщепление -1,4-гликозидные связи в молекулах гликогена.
Гликоген гл-1-ф <—-> гл.-6-ф -> глюкоза + НзРО4 (C6H10О5)n фосфоролиз фосфоглюкомутаза глюкоза-6-фосфотаза
Отщепление монозного звена идет в виде гл.-1-фосфата. Как же расщепляются -1,6-гликозидные связи? Оказывается здесь принимают два фермента : деветвящий фермент и амило-1,6-гликозидаза.
Судьба глюкозы-1-фосата. Оказывается за счет активного фермента фосфоглюкомутазы (катализирует прямую и обратную реакцию) глюкоза-1-фосфат превращается в глюкозу-6-фосфат. Если в клетках есть фермент, отщепляющий фосфорил от глюгоза-6-фосфат (глюкоза-6-фосфотаза),то далее образуется свободная глюкоза и фосфорная кислота.
Свободная глюкоза может проникать через наружную клеточную мембрану и поступать в кровяное русло. Ели же глюкозы-6-фосфотазы в клетках нет, то глюкоза может утилизироваться только данной конкретной клеткой.
Поступление глюкозы не нуждается в дополнительном притоке энергии, фосфоролиз идет без участия АТФ. В большинстве органах и тканях человека глюкоза-6-фосфотаза отсутствует поэтому запасенный в них гликоген используется только для собственных нужд. Мышечная ткань, костная, дентин, цемент и др.
Глюкоза-6-фосфотаза имеется только в трех органах: печень, кишечник, почки.
Наиболее существенным в связи с запасами является наличие этого фермента в гепатоцитах. Поскольку печень содержит весьма солидные запасы гликогена. И вообще печень выполняет роль буфера который поглощает глюкозу при повышенном содержании ее в крови и поставляет глюкозу в кровь когда содержание ее начинает падать.
Регуляция процессов синтеза и распада гликогена.
Сопоставим эти процессы.
Эти процессы различны. Это обстоятельство дает возможность раздельно регулировать синтез и распад гликогена.
Регуляция осуществляется на уровне 2 ферментов : гликогенфосфорилазы и гликогенсинтетазы.
Основным механизмом регуляции активности этих ферментов является их ковалентная модификация путем фосфорилирования - дефосфорилирования.
Фосфорилированная фосфорилаза активна (отвечает за расщепление гликогена) ее называют фосфорилаза-А. В то время как фосфорилированная гликогенсинтетаза неактивна, ( активная форма отвечает за синтез) а дефосфорилированные формы наоборот. Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В.