Биохимия крови и мочи

Автор: Пользователь скрыл имя, 15 Марта 2012 в 19:46, реферат

Краткое описание

1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.

Файлы: 1 файл

химия крови и мочи.doc

— 235.50 Кб (Скачать)

 

Изменение числа эритроцитов.

Повышение числа Э и их массы (гематокрит) в целом указывает на эритроцитоз, который может быть первичным (поражение эритропоэза, заболевания ситемы крови) или вторичным. Вторичный эритроцитоз чаще всего развивается вследствие кислородного голодания тка­ней и наблюдается при легочных заболеваниях, врожденных пороках сердца, при гиповентиляции, пребывании на высоте, накоплении карбоксигемоглобина при курении, молекулярных изменениях ге­моглобина, нарушении выработки эритропоэтина вследствие образования опухоли или кисты. Относи­тельное повышение Э определяется при гемоконцентрации, например, при ожогах, диарее, приеме диуретиков и т. д.

Понижение НЬ и Э является прямым непосредст­венным указанием на анемию (малокровие). Острая кровопотеря до одного литра принципиально не влияет на морфологию Э. Если в отсутствие кровопотери число Э снижается, то, естественно, следует предположить нарушение эффективности эритропо­эза. Эффективный (действительный) эритропоэз может быть оценен с помощью следующих тестов: определения уровня утилизации железа Э, определе­ния количества ретикулоцитов и скорости их созре­вания,   измерения   продолжительности   жизни эритроцитов и других функциональных характерис­тик, определяющих их полноценность.

Строение и синтез.

   Гемоглобин это гемопротеид. Это неферментный белок имеющий интересную структуру. В его состав входит 4 полипептидные цепи. Есть несколько видов гемоглобина: гемоглобин А есть и фетальный гемоглобин в состав которого входят несколько иные цепи.

Фетальный гемоглобин есть у любого человека, другое дело, что у плода это основной гемоглобин.

    Обычный гемоглобин взрослых содержит 2 парные  и 2 парные  цепи каждая полипептидная цепь соединяется с гемом. 4 цепи - 4 гема.

   Миоглобин похожий по структуре белок - мышечный белок, который в отличии от гемоглобина состоит из 1 полипептидной цепи и 1-го гема. Имеет значимость в доставке кислорода внутри клетки до митохондрий.

     В процессе присоединения кислорода происходит конформационные изменения  субъединиц - положительная кооперативность. Эти конформационные изменения имеют огромную значимость в процессе связывания кислорода в легких и в процессах его отдачи.

    Гем: Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи. Цитохромы отличаются от гема составом боковых цепей, но порфириновое ядро у них такое же.

   Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей (лаки, анилиновые окраски). В крови всегда присутствует метгемоглобин не выше 2%. Метгемоглобин - производное гемоглобина не способен транспортировать кислород.

   Восстановление гемоглобина происходит за счет фермента -метгемоглобинредуктазы. У детей этот фермент крайне неактивен.

   В боковой цепи содержится 4 метильные группы, 2 винильных и 2 остатка пропионовой кислоты.

  

     Распад гемоглобина происходит достаточно быстро. За сутки синтезируется 6 грамм. Валовый синтез гемоглобина достаточно высок. Гемоглобин в ходе функционирования эритроцита может превращаться в метгемоглобин, могут происходить различные процессы диструктирующие липидный бислой мембран, поскольку перикисное окисление мембран эритроцитов происходит.

Синтез глобина идет на рибосомах, а синтез гема идет из соединений заменимых:

во-первых для синтеза нужна заменимая аминокислота глицин, может образовываться

         из липидов, из продуктов распада углеводов, из других аминокислот и тд.

во-вторых сукцинилКоА, образуется в циклу Кребса, в него превращаются углеродные

          скелеты нескольких аминокислот.

  Через аминоорнитиновую кислоту образуется так называемая эпсилонаминолевулиновая кислота, далее идет реакция дегидротации и циклизация с образованием порфобилиногена1.

Порфириновое ядро вместе с боковыми цепями носит название протопорфирин9. Происходящие дальше процессы приводят к образованию этого соединения. Потом железо присоединяется с образованием гемоглобина. Синтез требует затрат энергии и на любом из этапов этот синтез может нарушаться.

Что вам здесь нужно знать?   Гем синтезируется, требует затрат энергии, синтез идет из простых достаточно соединений.

 

Гипоксии.

Гипоксия (кислородное голодание) — состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в про­цессе биологического-окисления.

1. Гипоксия вследствие понижения РО2, во вдыхаемом воздухе (экзогенная гипоксия).

2. Гипоксия при патологических процессах, нарушающих снабжение тканей кис­лородом при нормальном содержании его в окружающей среде. Сюда относятся следующие типы: а) дыхательный (легочный); б) сердечно-сосудистый (циркулятор-ный); в) кровяной (гемический); г) тканевый (гистотоксический): д) смешанный.

Гипоксия вследствие понижения парциального давления кислорода во вдыхаемом воздухе. Этот вид гипоксии возникает главным образом при подъеме на высоту. Может наблюдаться и в тех случаях, когда общее барометрическое давление нормально, но РО2, понижено, например при авариях в шахтах, неполадках в си­стеме кислородообеспечения кабины летательного аппарата, в подводных лодках и т.п., а также во время операций при неисправности наркозной аппаратуры,

При экзогенной гипоксии развивается гипоксемия, т.е. уменьшается пар­циальное давление кислорода в артериальной крови и снижается насыщение гемо­глобина кислородом.

Гипоксия при патологических процессах, нарушающих снабжение или утилизацию кислорода тканями.

Дыхательный (легочный) тип гипоксии возникает в связи с альвеолярной гиповентиляцией, что может быть обусловлено нарушением проходимости дыхательных путей (воспалительный процесс, инородные тела, спазм), уменьшением дыхательной поверхности легких (отек легкого, пневмония и т. д.).Обычно нарушается также выведение из организма углекислого газа.

Сердечно-сосудистый (циркуляторный) тип гипоксии наблю­дается при нарушениях кровообращения, приводящих к недостаточному кровоснаб­жению органов и тканей. Для газового состава крови в типичных случаях циркуляторной гипоксии характерны нормальные напряжение и содержание кислорода в артериальной крови, снижение этих показателей в венозной крови и высокая артерио-венозная разница по кислороду.

Кровяной (гемический) тип гипоксии возникает в результате уменьше­ния кислородной емкости крови при анемиях, обусловленных значительным умень­шением эритроцитной массы или резким понижением содержания гемоглобина в эритроцитах. В этих случаях Ро, в венозной крови резко снижено.

Гемическая гипоксия наблюдается также при отравлении оксидом углерода (образование карбоксигемоглобина) и метгемоглобинообразователями (метгемогло-бинемия), а также при некоторых генетически обусловленных аномалиях гемоглобина.

Тканевый (гистотоксический) тип гипоксии обычно обусловлен нарушением способности тканей поглощать кислород из крови. Утилизация кислорода тканями может затрудняются в результате угнетения биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембран­ных структур клетки. Типичным примером тканевой гипоксии может служить отравление цианидами.

 

Гемоглобинурия

 

Гемоглобинурии — обусловлены внутрисосудистым гемолизом эритроцитов.

Первич­ные — это холодовая, маршевая пароксизмальная.

Вторичные — это переливание несовместимой крови, отравление сульфаниламидами, анилиновыми крас­ками, грибами и т. д.

Гемоглобинурия - обнаружение в моче крови в виде растворенного кровяного пигмента

Гематурия - обнаружение в моче крови в форме красных кровяных клеток.

Почечная гематурия - основной симптом почечного нефрита

Внепочечная гематурия - при воспалительных процессах или травмах мочевых путей.

 

Глюкоза крови. Содержание глюкозы в крови, регуляция содержания глюкозы в крови. Причины изменения уровня глюкозы в крови и появление ее в моче.

Содержание

Глюкоза - 3,3-5,5 мМ/л

кишечник              распад гликогена            перевращение др. моносах.                    глюконеогинез

 

       

ГЛЮКОЗА

      

 

окисление                           окисление                                окисление                                    пентозный

до лактата                           до СО2 и Н2О                          до глюкурон.                               путь окисл.

анаэроб.                               аэроб. усл.                                 кислот

 

                   синтез                 синтез                     синтез                     синтез                       синтез

                  липидов        азотосодерж.          др. моносахар.           аминокислот             гликогена

                                         соединений         и их производных

          

 

  Транспорт глюкозы из крови в клетки путем облегченной диффузии, т.е. по градиенту концентрации с участием белка-переносчика. Эффективность работы этого транспорта в клетках большинства органов и тканей зависит от инсулина. Оказывается инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы увеличивая количество белка-переносчика за счет дополнительного его поступления из цитозоля в мембрану. Основная масса клеток является инсулин зависимыми. Исключение составляют эритроциты, гепатоциты и клетки нервной ткани. Поступление в эти клетки глюкозы не зависит от инсулина, поэтому их называют инсулин независимые клетки.

С другой стороны быстрое превращение глюкозы в глюкозу-6-фосфат позволяет поддерживать крайне низкую концентрацию глюкозы в клетках. Тем   самым   сохраняется   градиент   концентрации   глюкозы   между внеклеточной жидкостью и клеткой.

МОБИЛИЗАЦИЯ ГЛИКОГЕНА.

Гликоген   как   резерв   глюкозы   накапливается   в   клетках   в постадсорбционном периоде (после всасывания) и расходуется затем.

Расщепление гликогена в печени получило название - мобилизация гликогена.  Происходит  за  счет  фермента  гликоген-фосфорилазы.  Он катализирует  расщепление  -1,4-гликозидные   связи  в  молекулах гликогена.

Гликоген     гл-1-ф  <—->   гл.-6-ф    ->      глюкоза + НзРО4 (C6H10О5)n  фосфоролиз   фосфоглюкомутаза    глюкоза-6-фосфотаза

Отщепление монозного  звена идет  в  виде  гл.-1-фосфата.  Как же расщепляются -1,6-гликозидные связи? Оказывается здесь принимают два фермента : деветвящий фермент и амило-1,6-гликозидаза.

Судьба глюкозы-1-фосата. Оказывается за счет активного фермента фосфоглюкомутазы (катализирует прямую и обратную реакцию) глюкоза-1-фосфат превращается в глюкозу-6-фосфат. Если в клетках есть фермент, отщепляющий  фосфорил  от  глюгоза-6-фосфат  (глюкоза-6-фосфотаза),то далее образуется свободная глюкоза и фосфорная кислота.

Свободная  глюкоза  может  проникать  через  наружную  клеточную мембрану и поступать в кровяное русло. Ели же глюкозы-6-фосфотазы в клетках  нет,  то  глюкоза  может  утилизироваться  только  данной конкретной клеткой.

Поступление глюкозы не нуждается в дополнительном притоке энергии, фосфоролиз идет без участия АТФ.  В большинстве органах и тканях человека глюкоза-6-фосфотаза отсутствует поэтому запасенный в них гликоген используется только для собственных нужд. Мышечная ткань, костная, дентин, цемент и др.

Глюкоза-6-фосфотаза  имеется  только  в  трех  органах:  печень, кишечник, почки.

Наиболее существенным в связи с запасами является наличие этого фермента в гепатоцитах. Поскольку печень содержит весьма солидные запасы гликогена.  И вообще печень  выполняет роль  буфера который поглощает глюкозу при повышенном содержании ее в крови и поставляет глюкозу в кровь когда содержание ее начинает падать.

Регуляция процессов синтеза и распада гликогена.

Сопоставим эти процессы.

Эти процессы различны.  Это  обстоятельство дает  возможность раздельно регулировать синтез и распад гликогена.

Регуляция    осуществляется    на    уровне    2    ферментов    : гликогенфосфорилазы и гликогенсинтетазы.

Основным механизмом регуляции активности этих ферментов является их ковалентная модификация путем фосфорилирования - дефосфорилирования.

Фосфорилированная фосфорилаза активна  (отвечает  за расщепление гликогена) ее называют фосфорилаза-А. В то время как фосфорилированная гликогенсинтетаза неактивна, ( активная форма отвечает за синтез)  а дефосфорилированные формы наоборот. Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В.

Информация о работе Биохимия крови и мочи