Расчеты параметров токового контура электрического аппарата

Автор: Пользователь скрыл имя, 10 Ноября 2011 в 08:29, практическая работа

Краткое описание

Рассчитать электродинамические силы в контуре электрического аппарата высокого напряжения (рис. 2).
Для заданного варианта размеров токоведущего контура необходимо: рассчитать и построить эпюры распределения ЭДУ по траверсе и стержню проходного изолятора, определить величину и точки приложения равнодействующих; определить максимальное значение ЭДУ, воздействующего на траверсу выключателя; определить максимальное значение момента ЭДУ относительно плоскости закрепления фланца проходного изолятора. Расчет выполняется по величине тока IКЗ с учетом коэффициента превышения амплитуды ka=1.8.

Файлы: 1 файл

Расчетная работа.docx

— 357.49 Кб (Скачать)

Министерство  образования и  науки Российской Федерации

Федеральное государственное  автономное образовательное 

Учреждение  высшего профессионального  образования

«Уральский  федеральный университет

Имени первого Президента России

Б.Н. Ельцина»

Электротехнический  факультет

Кафедра «Техника высоких  напряжений» 
 
 
 
 
 
 
 

Расчетная работа № 2

Расчеты параметров токового контура электрического аппарата

Вариант № 02. 
 
 
 
 
 
 
 
 
 
 
 
 

                     Студент: Дильдина С.И.

                     Преподаватель: Грицук А.А.

                     Группа: Э-38022 
                 
                 
                 
                 
                 
                 
                 

Екатеринбург

2011

Задание к расчетной работе.

Задание 2. Расчеты параметров токового контура ЭА.

В работе необходимо выполнить:

  1. Рассчитать электродинамические силы в контуре электрического аппарата высокого напряжения (рис. 2).

    Для заданного  варианта размеров токоведущего контура  необходимо: рассчитать и построить  эпюры распределения ЭДУ по траверсе и стержню проходного изолятора, определить величину и точки приложения равнодействующих; определить максимальное значение ЭДУ, воздействующего на траверсу выключателя; определить максимальное значение момента ЭДУ относительно плоскости закрепления фланца проходного изолятора. Расчет выполняется по величине тока IКЗ с учетом коэффициента превышения амплитуды ka=1.8.

  1. Рассчитать величину контактного нажатия в месте соединения стержня с траверсой. Расчет выполняется по величине тока Iном с учетом заданного числа точек контактирования n полагая, что контакты торцевого типа выполнены цилиндрами диаметром d.

Варианты задания  приведены в табл. 3.

Данные для расчета.

№ вар. Iном, Ад Iкз, кАд n D, мм l1, м l2, м l3, м β, град
02 1250 50 2 38 1.2 0.5 0.45 95

Iном – Величина тока, проходящего по контуру;

Iкз – Ток короткого замыкания;

n – Число точек контактирования;

D – Диаметр контактов;

l1 – Длина траверсы;

l2 – Длина стержня проходного изолятора;

l3 – Длина траверсы внутри дугогасительного устройства;

β – Угол между траверсой и стержнем проходного изолятора.

Необходимо учитывать, что влияние ЭДУ ограничивается геометрией корпуса дугогасительного устройства. Токоведущие части, находящиеся  вне корпуса экранируются и влияние  ЭДУ на них незначительно, поэтому  их можно не учитывать при расчете. Таким образом, токовый контур можно упростить так, как показано на рисунке 3. 

 
 
 
 
 
 

1.1 Расчет стержня проходного изолятора.

Для расчета и  построения эпюры распределения  ЭДУ по стержню проходного изолятора  необходимо в отдельности рассмотреть  влияние траверсы и третьего токоведущего элемента на него.

Влияние траверсы на стержень проходного изолятора.

Расчет 1 участка.

1.Масштаб.

   Примем ml=0.1 . Таким образом получим:

   l1=12.0 см          l2=5.0 см               l3=4.5 см

2.Разобъем стержень  на равное число участков, равной  длины (n`=10 – количество участков). Расчет проводим лишь для участка стержня l=l3=0.45

     м 
 
 
 
 

   На рисунке 4 показана геометрия расчета.

   

  1. Расчет углов β11, β21 и hy.

   Рассмотрим  треугольник ΔABC:

     
 
 
 
 
 
 
 

   Так как  известны стороны АС= м СВ=l2=0.5 м и угол между ними ‹ВСА=95 град., то по теореме косинусов найдем сторону АВ:

АВ== ==0.502 м 

   Найдем  угол β11 по теореме синусов:

β11=arcsin(АС·sinβ21/AB)=arcsin(0.0225·sin95/0.502)=2.56°

β21=95°=const 

hy найдем по теореме синусов:

м

  1. Расчет производной геометрического коэффициента.

      1/м

    Выбираем масштаб К'г. Примем mК'г=2  

  1. Расчет площади участка ΔS1.

   ΔS1=К'г∙mК'гΔl∙ ml=40.681∙2∙0.045· 0.1=0.366

  1. Расчет силы ΔF1, действующее на участке(согласно заданию расчет выполняем по величине тока Iкз с учетом коэффициента превышения амплитуды ka=1.8).

   ΔF1=A· ΔS1 =810·0.366=296.57 H,

   Где А= = 810

  1. Расчет момента на участке ΔМ1.

        Н∙м

       - плечо силы для участка  с порядковым номером np, м. 

Расчет остальных  участков сведен в таблицу 1:

№ участка β1j cosβ1j β2j cosβ2j hyj, м         K'гj, 1/м ΔSj ΔFj ΔMj
1 2.56 0.999 95 -0.087 0.022 40.681 0.366 296.57 126.78
2 7.57 0.991 95 -0.087 0.067 13.446 0.121 98.019 37.492
3 12.4 0.977 95 -0.087 0.112 7.937 0.071 57.861 19.528
4 16.98 0.956 95 -0.087 0.157 5.54 0.05 40.387 11.813
5 21.29 0.932 95 -0.087 0.202 4.187 0.038 30.521 7.554
6 25.301 0.904 95 -0.087 0.247 3.313 0.03 24.154 4.89
7 29 0.875 95 -0.087 0.291 2.702 0.024 19.699 3.103
8 32.42 0.844 95 -0.087 0.336 2.252 0.02 16.414 1.847
9 65.54 0.814 95 -0.087 0.381 1.907 0.017 13.899 0.938
10 38.403 0.784 95 -0.087 0.426 1.635 0.015 11.923 0.268
j               609.447 214.213
 

Расчет точки  приложения результирующей силы.

lp= ∑Mj/ ∑Fj=214.213/609.447=0.35 м

С учетом масштаба:

lpm= lp∙ml= 0.35∙0.1=0.035 м. 
 

Влияние третьего токоведущего элемента на стержень проходного изолятора. 

1. Масштаб, количество и длину участков оставим прежними.

2. На рисунке 5 показаны основные параметры необходимые для расчета.

 
 
 
 

3. Расчет углов β11, β21 и hy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   EB=l3=0.45 м; CB = l2 =0.5 м; СВЕ=95°; АСВ=95°. Зная эти величины, по теореме косинусов найдем величину АВ:

   АС  – середина расчетного участка, зависит  от порядкового номера участка np и определяется формулой: , для первого расчетного участка АС=0.023 м

=0.502 м

АВС можно определить используя теорему синусов:

=2.56°

Зная градусные  величины СВЕ и АВС определим величину угла β`21:

β`21 = СВЕ - АВС = 95° - 2.56° = 92.44°

Для нахождения величины угла β`11 необходимо знать величину АЕ.

Её можно найти  по теореме косинусов, рассмотрев треугольник  АВЕ:

=0.689 м

По теореме  синусов найдем β`11:

=46.8° 

Снова используя  теорему синусов найдем hy: 

=0.502 м. 

  1. Расчет  производной геометрического коэффициента.

  1/м

 Выбираем  масштаб К'г. Примем mК'г=2  

Информация о работе Расчеты параметров токового контура электрического аппарата