Автор: Пользователь скрыл имя, 14 Марта 2015 в 07:55, дипломная работа
Целью данного дипломного проекта является: спроектировать систему энергоснабжения для реконструкции старой системы электроснабжения машиностроительного завода «Аскольд» с выбором ТП, расчетом внешнего освещения, выбором числа и мощности трансформаторов, с определением мощности компенсирующих устройств, выбором сечения проводов и кабелей, выбором защитных устройств, расчётом релейной защиты электродвигателей напряжением 10 кВ, расчётом капитальных затрат на реконструкцию и расчетом заводской себестоимости 1квт.ч. потребляемой электроэнергии, расчетом искусственного заземления и молниезащиты ГПП.
Аннотация………………………………..………………………………………..........……....7
Введение……………………………..………………………………………..………...……....8
1 Исходные данные для проектирования……………..……………….……………......…...10
1.1 Характеристика источника питания…………………..………………………….....…...12
1.2 Характеристика режима работы проектируемого объекта………….……………..…...12
1.3 Характеристика высоковольтных потребителей……………………....…..……...…….16
2 Расчет электрических нагрузок проектируемого объекта…….……………..….………..22
2.1 Расчёт силовых электрических нагрузок………………………………………..….…....22
2.2 Расчёт осветительных нагрузок цехов……………………..…………....……………….23
2.3 Расчёт наружного освещения……………………....………………..……...…….………30
2.4 Расчёт охранного освещения..………....………….……………………….……….....…..33
2.5 Расчёт освещения открытых площадок……….........………………………………....….34
3 Выбор числа и мощности трансформаторов на ТП с учётом с учётом компенсации реактивной мощности…...........……………………....................……….…....…...………….36
3.1 Выбор рекомендованного коэффициента загрузки….…..………………………..…….36
3.2 Подбор целесообразной мощности трансформаторов в соответствии с нагрузками цехов….......................……….……………………………………………………….......…….36
3.3 Определение числа трансформаторов……………………………...……………..……...38
3.4 Выбор местоположения ТП и распределение нагрузок по трансформаторным под станциям………………..……………………………………………………………………....38
3.5 Выбор низковольтных батарей статических конденсаторов…………...…..….……….40
4 Расчёт и построение картограммы электрических нагрузок……………….……….……46
5 Выбор числа и мощности трансформаторов на ГПП……………………………….….…49
5.1 Определение реактивной мощности, вырабатываемой синхронными двигателями………………………………………………………………………....…………49
5.2 Определение расчётной активной мощности предприятия……….……………………50
5.3 Определение реактивной мощности, получаемой от энергосистемы.……… ………51
5.4 Выбор числа и мощности трансформаторов на ГПП…………….……..……....………51
5.5 Расчёт потерь мощности и энергии в трансформаторах……….……….………………52
6. Выбор схемы внешнего электроснабжения предприятия и электрической схемы
заводской подстанции…………………………………………………………………………53
6.1 Расчёт и проверка сечений питающих ЛЭП……………………………………………..55
6.2 Определение потерь энергии с ЛЭП……………..…………………………………….. ..55
7 Технико-экономическое обоснование напряжения питающих ЛЭП с учётом стоимости ГПП………………………………………………………………..……………………….…...57
8 Составление баланса реактивной мощности для внутризаводской схемы электроснабжения. ……………………………………………………………………………………………...…...61
9 Расчёт сети внутризаводского электроснабжения……………….…………………… ….62
9.1 Уточнение варианта схемы электроснабжения с учётом высоковольтной нагрузки………………………………………………………………………….…………….62
9.2 Расчёт сечений кабельных линий на 0,4 кВ………..……………………………………64
9.3 Расчёт сети наружного освещения…………………………………………………….…66
10.1 Расчёт токов короткого замыкания в узловых точках схемы электроснабжения предприятия……………………………………………………………… …………...……..70
10.2 Компоновка ГПП, РП, ТП. Выбор и проверка оборудования и токопроводов на устойчивость к токам короткого замыкания………………………...……………………………………………………………79
11 Специальная глава дипломного проекта…………………………………………………89
11.1 Характеристика объекта и общая методика выбора и расчёта осветительных
сетей……………………………………………………...…………………………………….89
11.2 Расчёт осветительных нагрузок цеха…………………………………………………...89
11.3 Выбор светильников общего освещения……………………………………………….90
11.4 Расчёт освещения выполненного лампами ДРЛ………………………………………92
11.5 Расчёт освещения выполненного лампами ЛЛ………………………………………..94
11.6 Расчёт параметров аварийного освещения…………………………………………….95
12 Расчёт электроэнергетической составляющей себестоимости продукции промышленного предприятия……………………………………………………………………………..…….105
12.1 Стоимость электроэнергии, потреблённой промышленным предприятием за год………..…………………………………………………………………………………..…105
12.2 Годовая заработная плата рабочих и ИТР электрохозяйства предприятия.…....……106
12.3 Годовые отчисления на прочие ежегодные затраты…..………………………………111
12.4 Определение годовых амортизационных отчислений на реновацию ……………….112
12.5 Определение годовых отчислений в ремонтный фонд………………………………..113
12.6 Расчёт стоимости материалов, расходуемых при текущем ремонте и обслуживании электрохозяйства предприятия за год………………………………………………………..114
12.7 Определение прочих ежегодных затрат………………………………………………...114
12.8 Расчёт электроэнергетической составляющей себестоимости продукции промышленного предприятия……………………………………………………………………………………114
12.9 Расчёт удельной величины энергетической составляющей себестоимости
продукции……………………………………………………………………………………...115
12.10 Расчёт электроэнергетической составляющей себестоимости продукции промышленного предприятия ОАО «Аскольд» для эксплуатируемой системы электроснабжения……….115
13 Релейная защита синхронных и асинхронных электродвигателей напряжением свыше
1000 В………
14 ОХРАНА ТРУДА И ЭЛЕКТРОБЕЗОПАСНОСТЬ
14.1 Заземляющие устройства
Настоящая глава распространяется на все виды заземляющих устройств, системы уравнивания потенциалов и т.п. (далее - заземляющие устройства).
Заземляющие устройства должны соответствовать требованиям государственных стандартов, правил устройства электоустановок, строительных норм и правил и других нормативно – технических документов, обеспечивать условия безопасности людей, эксплуатационные режимы работы и защиту электоустановок.
Допуск в эксплуатацию заземляющих устройств осуществляется в соответствии с установленными требованиями. При сдаче в эксплуатацию заземляющего устройства монтажной организацией должна быть предъявлена документация в соответствии с установленными требованиями и правилами.
Присоединение заземляющих проводников к заземлителю и заземляющим конструкциям должно быть выполнено сваркой, а к главному заземляющему зажиму, корпусам аппаратов, машин и опорам ВЛ – болтовым соединением (для обеспечения возможности производства измерений). Контактные соединения должны отвечать требованиям государственных стандартов.
Монтаж заземлителей, заземляющих проводников, присоединение заземляющих проводников к заземлителям и оборудованию должен соответствовать установленным требованиям.
Каждая часть электроустановки, подлежащая заземлению и занулению, должна быть присоединена к сети заземления или зануления с помощью отдельного проводника. Последовательное соединение заземляющими (зануляющими) проводниками нескольких элементов электроустановки не допускается. Сечение заземляющих и нулевых защитных проводников должно соответствовать правилам устройства электроустановок.
Открыто проложенные заземляющие проводники должны быть предохранены от коррозии и окрашены в чёрный цвет.
Для определения технического состояния заземляющего устройства должны проводиться визуальные осмотры видимой части, осмотры заземляющего устройства с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования.
Визуальные осмотры видимой части заземляющего устройства должны проводиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным. При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов. Результаты осмотров должны заноситься в паспорт заземляющего устройства.
Осмотры с выборочным вскрытием грунта в местах наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений должны производиться в соответствии с графиком планово – профилактических работ (далее - ППР), но не реже одного раза в 12 лет. Величина участка заземляющего устройства, подвергающегося выборочному вскрытию грунта (кроме ВЛ в населённой местности), определяется решением технического руководителя Потребителя.
Выборочное вскрытие грунта осуществляется на всех заземляющих устройствах электроустановок Потребителя; для ВЛ в населённой местности вскрытие производится выборочно у 2% опор, имеющих заземляющие устройства.
В местности с высокой агрессивностью грунта по решению технического руководителя Потребителя может быть установлена более частая периодичность осмотра с выборочным вскрытием грунта. При вскрытии грунта должна производиться инструментальная оценка состояния заземлителей и оценка степени коррозии контактных соединений. Элемент заземлителя должен быть заменён, если разрушено более 50% его сечения. Результаты осмотров должны оформляться актами.
Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования должны производиться:
- измерение сопротивления заземляющего устройства;
- измерение напряжения
прикосновения ( в электроустановках,
заземляющее устройство
- измерение токов короткого
замыкания, электроустановки, проверка
состояния пробивных
- измерение удельного сопротивления грунта в районе заземляющего устройства.
Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% железобетонных и металлических опор в населённой местности. Измерения должны выполняться в период наибольшего высыхания грунта (для районов вечной мерзлоты – в период наибольшего промерзания грунта). Результаты измерений оформляются протоколами. На ГПП и ТП, где отсоединение заземляющих проводников от оборудования невозможно по условиям обеспечения категорийности электроснабжения, техническое состояние заземляющего устройства должно оцениваться по техническим результатам измерений.
Измерения параметров заземляющих устройств – сопротивление заземляющего устройства, напряжение прикосновение, проверка наличия цепи между заземлителями и заземляемыми элементами – производится также после реконструкции и ремонта заземляющих устройств, при обнаружении разрушения или перекрытия изоляторов ВЛ электрической дугой. При необходимости должны приниматься меры по доведению параметров заземляющих устройств до нормативных.
На каждое, находящееся в эксплуатации, заземляющее устройство должен быть заведён паспорт, содержащий:
- исполнительную схему устройства с привязками к капитальным сооружениям;
- указана связь с надземными и подземными коммуникациями и с другими заземляющими устройствами;
- дату ввода в эксплуатацию;
- основные параметры
- величина сопротивления растеканию тока заземляющего устройства;
- удельное сопротивление грунта;
- данные по напряжению прикосновения (при необходимости);
- данные по степени
коррозии искусственных
- данные по сопротивлению металлосвязи оборудования с заземляющим устройством;
- ведомость осмотров и выявленных дефектов;
- информация по устранению замечаний и дефектов.
К паспорту должны быть приложены результаты визуальных осмотров, осмотров со вскрытием грунта, протоколы измерения параметров заземляющего устройства, данные о характере ремонтов и изменениях, внесённых в конструкцию устройства.
Для проверки соответствия токов плавления предохранителей или уставок расцепителей автоматических выключателей току короткого замыкания в электроустановках периодически, но не реже 1 раза в 2 года должна производиться проверка срабатывания защиты при коротком замыкании.
После каждой перестановки электрооборудования и монтажа нового (в электроустановках до 1000В) перед его включением необходимо проверить срабатывание защиты при коротком замыкании.
Использование земли в качестве фазного или нулевого провода в электроустановках до 1000В не допускается.
При использовании в электроустановке устройств защитного отключения (далее – УЗО) должна осуществляться его проверка в соответствии с рекомендациями завода – изготовителя и нормами испытаний электрооборудования.
Сети до 1000В с изолированной нейтралью должны быть защищены пробивным предохранителем. Предохранитель может быть установлен в нейтрали или фазе на стороне низшего напряжения трансформатора. При этом должен быть предусмотрен контроль за его целостностью
14.1.1 Защитное заземление
Защитным заземлением называется преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Корпуса электрических машин, трансформаторов, светильников, аппаратов и другие металлические нетоковедущие части могут оказаться под напряжением при замыкании их токоведущих частей на корпус. Если корпус при этом не имеет контакта с землёй, прикосновение к нему так же опасно, как и прикосновение к фазе. Таким образом, безопасность обеспечивается путём заземления корпуса заземлителем, имеющим малое сопротивление заземления и малый коэффициент напряжения прикосновения.
14.1.2 Область применения защитного заземления
Защитное заземление может быть эффективно только в том случае, если ток замыкания на землю не увеличивается с уменьшением сопротивления заземления. Это возможно в сетях с изолированной нейтралью, где при глухом замыкании на землю или на заземлённый корпус ток не зависит от проводимости (или сопротивления заземления), а также в сетях напряжением выше 1000 В с заземлённой нейтралью. В последнем случае замыкание на землю является коротким замыканием, причём срабатывает максимальная токовая защита.
В сети с заземлённой нейтралью напряжением до 1000 В заземление неэффективно, так как даже при глухом замыкании на землю ток зависит от сопротивления заземления и с уменьшением последнего ток возрастает. Поэтому защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземлённой нейтралью.
14.1.3 Устройство заземления
По расположению заземлителей относительно заземлённых корпусов заземления делят на выносные и контурные.
Выносное заземление. Заземлители располагаются на некотором удалении от заземляемого оборудования. Поэтому заземлённые корпуса находятся вне поля растекания – на земле, и человек, касаясь корпуса, оказывается под полным напряжением относительно земли. Выносное заземление защищает только за счёт малого сопротивления заземления.
Контурное заземление. Заземлители располагаются по контуру вокруг заземлённого оборудования на небольшом (несколько метров) расстоянии друг от друга. Поля растекания заземлителей накладываются, и любая точка поверхности грунта внутри контура имеет значительный потенциал. Вследствие этого разность потенциалов между точками, находящимися внутри контура, снижена и коэффициент прикосновения намного меньше единицы. Коэффициент напряжения шага также меньше максимально возможного значения. Ток через человека, касающегося корпуса, меньше чем при выносном заземлении (рисунок 14.1).
Иногда при выполнении контурного заземления внутри контура прокладывают горизонтальные полосы, которые дополнительно выравнивают потенциалы внутри контура.
Чтобы уменьшить шаговые напряжения за пределами контура, вдоль проходов и проездов в грунт закладывают специальные шины, как показано на рисунке 14.2.
В качестве искусственных заземлителей применяют стальные стержни из угловой стали 60 х 60 мм (или близкой по размеру), а также из стальных труб диаметром 35 – 50 мм и стальных шин сечением не менее 100 мм². Стержни длиной 2,5 – 5 м погружают (забивают) в грунт вертикально в специально подготовленной вокруг защищаемой территории траншее (рисунок 14.3).
Рисунок 14.1 Контурное заземление:
а – разрез; б – план; в – распределение потенциалов
Рисунок 14.2 Выравнивание потенциалов за пределами контура
I – естественная кривая
изменения потенциала в грунте;
II – кривая изменения
Рисунок 14.3 Установка трубчатого заземлителя в траншее
Вертикальные заземлители соединяют стальной шиной, которую приваривают к каждому заземлителю.
В открытых электроустановках корпуса присоединяют непосредственно к заземлителю проводами. В зданиях прокладывают магистраль заземления, к которой присоединяют заземляющие провода. Магистраль соединяют с заземлителем не менее чем в двух местах.
В целом вся совокупность заземлителя и заземляющих проводов называется заземляющим устройством. Заземляющими проводниками называются металлические проводники, соединяющие заземляемые части электроустановки с заземлителем.
14.1.3 Нормирование параметров защитного заземления
Поскольку заземление должно обеспечивать безопасность при прикосновении к нетоковедущим частям, случайно оказавшимся под напряжением, и при воздействии напряжения шага, нормированию подлежат наибольшее напряжение прикосновения внутри контура, наибольшее напряжение шага и напряжение относительно земли. Эти величины не должны превосходить длительно допустимых.
Исходя из приведённых условий, можно нормировать сопротивление заземления и коэффициенты напряжения прикосновения шага, учитывая ток замыкания на землю в данной электроустановке.
Расчетный ток замыкания на землю – наибольший возможный в данной электроустановке ток замыкания на землю.
В сетях напряжением до 1000 В ток однофазного замыкания на землю не превышает 10 А, так как даже при самом плохом состоянии изоляции и значительной ёмкости сопротивление фазы относительно земли не бывает менее 100 Ом. Следует учесть, что в сетях напряжением 660 В сопротивление изоляции значительно выше 100 Ом и ток замыкания на землю не достигает даже 10 А.
Информация о работе Электроснабжение машиностроительного завода