История развития механики

Автор: Пользователь скрыл имя, 26 Января 2011 в 17:04, реферат

Краткое описание

Внутренний мир человека определяется совокупностью тех явлений, которые абсолютно не могут быть доступны непосредственному наблюдению другого человека Вызванное внешним миром раздражение в органе чувств передается миру внутреннему и со своей стороны вызывает в нем субъективное ощущение, для появления которого необходимо наличие сознания. Воспринятое внутренним миром субъективное ощущение объективируется, т.е. переносится во внешнее пространство, как нечто, принадлежащее определенному месту и определенному времени.

Оглавление

1. ВВЕДЕНИЕ.

2. ОПРЕДЕЛЕНИЕ МЕХАНИКИ; ЕЕ МЕСТО СРЕДИ ДРУГИХ НАУК;

ПОДРАЗДЕЛЕНИЯ МЕХАНИКИ.

3. ОСНОВНЫЕ ПОНЯТИЯ И МЕТОДЫ МЕХАНИКИ.

4. ИСТОРИЯ РАЗВИТИЯ МЕХАНИКИ:

Эпоха, предшествовавшая установлению основ механики.

Период создания основ механики.

Развитие методов механики в XVIII в .

Механика XIX и начала XX вв.

Механика в России и СССР.

5. ПРОБЛЕМЫ СОВРЕМЕННОЙ МЕХАНИКИ.

6. ЗАКЛЮЧЕНИЕ.

7. ПРИЛОЖЕНИЕ.

Файлы: 1 файл

Развитие механики.rtf

— 258.21 Кб (Скачать)

     Одним из важных факторов, способствовавших развитию механики в России, явился высокий уровень преподавания ее в высшей школе. В этом отношении многое было сделано М. В. Остроградским и его последователями Наибольшее техническое значение вопросы устойчивости движения имеют в задачах теории автоматического регулирования. Выдающаяся роль в развитии теории и техники регулирования машин и производственных процессов принадлежит И. Н. Вознесенскому (1887 - 1946). Проблемы динамики твердого тела развивались главным образом в связи с теорией гироскопических явлений.

     Существенных результатов достигли советские ученые в области теории упругости. Ими были проведены исследования по теории изгиба плит и общим решениям задач теории упругости, по плоской задаче теории упругости, по вариационным методам теории упругости, по строительной механике, по теории пластичности, по теории идеальной жидкости, по динамике сжимаемой жидкости и газовой динамике, по теории фильтрации движений, что способствовало быстрому развитию советской гидроаэродинамики, были развиты динамические задачи в теории упругости. Результаты первостепенной важности, полученные учеными Советского Союза по теории нелинейных колебаний, утвердили за СССР ведущую роль в этой области. Постановка, теоретическое рассмотрение и организация экспериментального изучения нелинейных колебаний составляют важную заслугу Л. И. Мандельштама (1879 - 1944) и Н. Д. Папалекси (1880 - 1947) и их школы (А. А. Андронов и другие).

     Основы математического аппарата теории нелинейных колебаний заключены в работах А. М. Ляпунова и А. Пуанкаре. “Предельные циклы” Пуанкаре были поставлены А. А. Андроновым (1901 - 1952) в связь с задачей о незатухающих колебаниях, названных им автоколебаниями. Наряду с методами, основанными на качественной теории дифференциальных уравнений, развилось аналитическое направление теории дифференциальных уравнений. 

     5. ПРОБЛЕМЫ СОВРЕМЕННОЙ МЕХАНИКИ. 

     К числу основных проблем современной механики систем с конечным числом степеней свободы относятся, в первую очередь, задачи теории колебаний, динамики твердого тела и теории устойчивости движения. В линейной теории колебаний важное значение имеет создание эффективных методов исследования систем с периодически изменяющимися параметрами, в частности, явления параметрического резонанса.

     Для изучения движения нелинейных колебательных систем разрабатываются как аналитические методы, так и методы, основанные на качественной теории дифференциальных уравнений. Проблемы колебаний тесно переплетаются с вопросами радиотехники, автоматического регулирования и управления движениями, а также с задачами измерения, предупреждения и устранения вибраций в транспортных устройствах, машинах и строительных сооружениях. В области динамики твердого тела наибольшее внимание уделяется задачам теории колебаний и теории устойчивости движения. Эти задачи ставятся динамикой полета, динамикой корабля, теорией гироскопических систем и приборов, применяемых главным образом в аэронавигации и кораблевождении. В теории устойчивости движения на первое место выдвигается исследование “особых случаев” Ляпунова, устойчивости периодических и неустановившихся движений, причем основным орудием исследования является так называемая “вторая метода Ляпунова”.

     В теории упругости наряду с задачами для тела, подчиняющегося закону Гука, наибольшее внимание привлекают вопросы пластичности и ползучести в деталях машин и сооружений, расчет устойчивости и прочности тонкостенных конструкций. Большое значение приобретает также направление, ставящее себе целью установление основных законов связи напряжений с деформациями и скоростями деформаций для моделей реальных тел (реологические модели). В тесной связи с теорией пластичности развивается механика сыпучей среды. Динамические проблемы теории упругости связывают с сейсмологией, распространением упругих и пластичных волн вдоль стержней и динамическими явлениями, возникающими при ударе Наиболее важные задачи гидроаэродинамики связаны с проблемами больших скоростей в авиации, баллистике, турбостроении и двигателестроении.

     Сюда относятся, прежде всего, теоретическое определение аэродинамических характеристик тел при до-, около- и сверхзвуковых скоростях как при установившемся, так и неустановившемся движениях.

     Проблемы аэродинамики больших скоростей тесно переплетаются с вопросами теплоотдачи, горения и взрывов. Изучение движений сжимаемого газа при больших скоростях предполагает основную проблему газовой динамики, а при малых скоростях связывается с задачами динамической метеорологии. Основное значение для гидроаэродинамики имеет проблема турбулентности, до сих пор еще не получившая теоретического решения. На практике продолжают пользоваться многочисленными эмпирическими и полуэмпирическими формулами.

     Перед гидродинамикой тяжелой жидкости стоят проблемы пространственной теории волн и волнового сопротивления тел, волнобразования в реках и каналах и ряд задач, связанных с гидротехникой.

     Большое значение для последней, а также для вопросов добычи нефти имеют проблемы фильтрационного движения жидкостей и газов в пористых средах . 

     6. ЗАКЛЮЧЕНИЕ.

     Механика Галилея - Ньютона прошла длинный путь развития и далеко не сразу завоевала право называться классической. Ее успехи, особенно в XVII-XVIII столетиях, утвердили эксперимент в качестве основного метода проверки теоретических построений. Практически до конца XVIII столетия механика занимала ведущее положение в науке, и ее методы оказали большое влияние на развитие всего естествознания.

     В дальнейшем механика Галилей - Ньютона продолжала интенсивно развиваться, но ее ведущее положение постепенно начало утрачиваться. На передний край науки стали выходить электродинамика, теория относительности, квантовая физика, ядерная энергетика, генетика, электроника, вычислительная техника. Механика уступила место лидера в науке, но не утратила своего значения. По-прежнему все динамические расчеты любых механизмов, работающих на земле, под водой, в воздухе и космосе, основаны в той или иной степени на законах классической механики. На далеко не очевидных следствиях из основных ее законов построены приборы, автономно, без вмешательства человека, определяющие местонахождение подводных лодок, надводных кораблей, самолетов; построены системы, автономно ориентирующие космические аппараты и направляющие их к планетам Солнечной системы, комете Галлея. Аналитическая механика - составная часть классической механики - сохраняет “непостижимую эффективность” в современной физике. Поэтому, как бы ни развивалась физика и техника, классическая механика всегда будет занимать свое достойное место в науке. 

7. ПРИЛОЖЕНИЕ. 

     Гидромеханика - раздел физики, занимающийся изучением законов движения и равновесия жидкости и её взаимодействия с омываемыми твердыми телами.

     Аэромеханика - наука о равновесии и движении газообразных сред и твердых тел в газообразной среде, в первую очередь в воздухе.

     Газовая механика - наука, изучающая движение газов и жидкостей в условиях, когда свойство сжимаемости имеет существенное значение.

     Аэростатика - часть механики, изучающая условия равновесия газов (в особенности воздуха).

     Кинематика - раздел механики, в котором изучаются перемещения тел без учета взаимодействий, определяющих эти движения. Основные понятия: мгновенная скорость, мгновенное ускорение.

     Баллистика - наука о движении снаряда. Внешняя баллистика изучает движение снаряда в воздухе. Внутренняя баллистика изучает движение снаряда под действием пороховых газов, механическая свобода которого ограничена какими-либо усилиями.

     Гидравлика - наука об условиях и законах равновесия и движения жидкостей и способах применения этих законов к решению практических задач. Может быть определена как прикладная механика жидкости.

     Инерциальная система координат - такая система координат, в которой выполняется закон инерции, т.е. в которой тело при компенсации оказываемых на него внешние воздействий движется равномерно и прямолинейно.

     Давление - физическая величина, равная отношению нормальной составляющей силы, с которой тело действует на поверхность соприкасающейся с ним опоры, к площади соприкосновения или иначе - нормальная поверхностная сила, действующая на единицу площади.

     Вязкость (или внутреннее трение) - свойство жидкостей и газов оказывать сопротивление при перемещении одной части жидкости относительно другой.

     Ползучесть - процесс малой непрерывной пластичной деформации, протекающей в металлах в условиях длительного статического нагружения.

     Релаксация - процесс установления статического равновесия в физической или физико-химической системе. В процессе релаксации макроскопические величины, характеризующие состояние системы, асимптотически приближаются к своим равновесным значениям.

     Механические связи - ограничения, наложенные на движение или положение системы материальных точек в пространстве и осуществляемые при помощи поверхностей, нитей, стержней и других.

     Математические соотношения между координатами или их производными, характеризующие осуществляемые механические связи ограничения движения, называют уравнениями связей. Чтобы движение системы было возможно, число уравнений связей должно быть меньше числа координат, определяющих положение системы. 

     Оптический метод исследования напряжений - метод изучения напряжений в поляризованном свете, основанный на том, что частицы аморфного материала при деформации становятся оптически анизотропными. При этом главные оси эллипсоида показателей преломления совпадают с главными направлениями деформации, а главные световые колебания, проходя через деформированную пластину поляризованного света, получают разность хода.

     Тензометр - прибор для измерения приложенных к какой-либо системе растягивающих или сжимающих усилий по деформациям, вызываемым этими усилиями

     Небесная механика - раздел астрономии, посвященный изучению движения космических тел. Сейчас термин применяют по другому и предметом небесной механики обычно считают только общие методы изучения движения и силового поля тел солнечной системы.

     Теория упругости - раздел механики, в котором изучаются перемещения, упругие деформации и напряжения, возникающие в твердом теле под действием внешних сил, от нагревания и от других воздействий. Ставит своей задачей определить количественные соотношения, характеризующие деформацию или внутренние относительные перемещения частиц твердого тела, находящегося под влиянием внешних воздействий в состоянии равновесия или малого внутреннего относительного движения.

Информация о работе История развития механики