История развития механики

Автор: Пользователь скрыл имя, 26 Января 2011 в 17:04, реферат

Краткое описание

Внутренний мир человека определяется совокупностью тех явлений, которые абсолютно не могут быть доступны непосредственному наблюдению другого человека Вызванное внешним миром раздражение в органе чувств передается миру внутреннему и со своей стороны вызывает в нем субъективное ощущение, для появления которого необходимо наличие сознания. Воспринятое внутренним миром субъективное ощущение объективируется, т.е. переносится во внешнее пространство, как нечто, принадлежащее определенному месту и определенному времени.

Оглавление

1. ВВЕДЕНИЕ.

2. ОПРЕДЕЛЕНИЕ МЕХАНИКИ; ЕЕ МЕСТО СРЕДИ ДРУГИХ НАУК;

ПОДРАЗДЕЛЕНИЯ МЕХАНИКИ.

3. ОСНОВНЫЕ ПОНЯТИЯ И МЕТОДЫ МЕХАНИКИ.

4. ИСТОРИЯ РАЗВИТИЯ МЕХАНИКИ:

Эпоха, предшествовавшая установлению основ механики.

Период создания основ механики.

Развитие методов механики в XVIII в .

Механика XIX и начала XX вв.

Механика в России и СССР.

5. ПРОБЛЕМЫ СОВРЕМЕННОЙ МЕХАНИКИ.

6. ЗАКЛЮЧЕНИЕ.

7. ПРИЛОЖЕНИЕ.

Файлы: 1 файл

Развитие механики.rtf

— 258.21 Кб (Скачать)

     Соотношения между мерами движения материальной точки или системы материальных точек и мерами действия сил содержатся в общих теоремах динамики: количеств движения, моментов количества движения и кинетической энергии. Эти теоремы выражают свойства движений как дискретной системы материальных точек, так и сплошной среды. При рассмотрении равновесия и движения несвободной системы материальных точек, т. е. системы, подчиненной заданным наперед ограничениям - механическим связям (см. Приложение), важное значение имеет применение общих принципов механики - принципа возможных перемещений и принципа Д'Аламбера. В применении к системе материальных точек принцип возможных перемещений состоит в следующем: для равновесия системы материальных точек со стационарными и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил при всяком возможном перемещении системы была равна нулю (для связей неосвобождающих) или же была равна нулю или меньше нуля (для связей освобождающих). Принцип Д'Аламбера для свободной материальной точки гласит: в каждый момент времени силы, приложенные к точке, могут быть уравновешены добавлением к ним силы инерции.

     При формулировке задач механика исходит из основных уравнений, выражающих найденные законы природы. Для решения этих уравнений применяют математические методы, причем многие из них зарождались и получали свое развитие именно в связи с проблемами механики. При постановке задачи всегда приходилось сосредотачивать внимание на тех сторонах явления, которые представляются основными. В случаях, когда необходимо учитывать и побочные факторы, а также в тех случаях, когда явление по своей сложности не поддается математическому анализу, широко применяется экспериментальное исследование.

     Экспериментальные методы механики базируются на развитой технике физического эксперимента. Для записи движений используются как оптические методы, так и методы электрической регистрации, основанные на предварительном преобразовании механического перемещения в электрический сигнал.

     Для измерения сил используются различные динамометры и весы, снабжаемые автоматическими приспособлениями и следящими системами. Для измерения механических колебаний широкое распространение получили разнообразные радиотехнические схемы. Особых успехов достиг эксперимент в механике сплошных сред. Для измерения напряжения используется оптический метод (см. Приложение), заключающийся в наблюдении нагружённой прозрачной модели в поляризованном свете.

     Для измерения деформации большое развитие в последние годы приобрело тензометрирование при помощи механических и оптических тензометров (см. Приложение), а также тензометров сопротивления.

     Для измерения скоростей и давлений в движущихся жидкостях и газах с успехом применяют термоэлектрические, ёмкостные, индукционные и другие методы. 

     4. ИСТОРИЯ РАЗВИТИЯ МЕХАНИКИ.

     История механики, так же как и других естественных наук, неразрывно связана с историей развития общества, с общей историей развития его производительных сил. Историю механики можно разделить на несколько периодов, отличающихся как характером проблем, так и методами их решения.

     Эпоха, предшествовавшая установлению основ механики. Эпоху создания первых орудий производства и искусственных построек следует признать началом накопления того опыта, который в дальнейшем служил основой для открытия основных законов механики. В то время как геометрия и астрономия античного мира представляли уже довольно развитые научные системы, в области механики были известны лишь отдельные положения, относящиеся к наиболее простым случаям равновесия тел.

     Ранее всех разделов механики зародилась статика. Этот раздел развивался в тесной связи со строительным искусством античного мира.

     Основное понятие статики - понятие силы - вначале тесно связывалось с мускульным усилием, вызванным давлением предмета на руку. Примерно к началу IV в. до н. э. уже были известны простейшие законы сложения и уравновешивания сил, приложенных к одной точке вдоль одной и той же прямой. Особый интерес привлекала задача о рычаге. Теория рычага была создана великим ученым древности Архимедом (III в. до н. э.) и изложена в сочинении “О рычагах”. Им были установлены правила сложения и разложения параллельных сил, дано определение понятия центра тяжести системы двух грузов, подвешенных к стержню, и выяснены условия равновесия такой системы. Архимеду же принадлежит открытие основных законов гидростатики.

     Свои теоретические знания в области механики он применял к различным практическим вопросам строительства и военной техники. Понятие момента силы, играющее основную роль во всей современной механике, в скрытом виде уже имеется в законе Архимеда. Великий итальянский ученый Леонардо да Винчи (1452 - 1519) вводил представление о плече силы под видом “потенциального рычага”.

     Итальянский механик Гвидо Убальди (1545 - 1607) применяет понятие момента в своей теории блоков, где было введено понятие полиспаста. Полиспаст (греч. poluspaston , отpolu - много иspaw - тяну) - система подвижных и неподвижных блоков, огибаемых канатом, используются для получения выигрыша в силе и, реже, для получения выигрыша в скорости. Обычно к статике принято относить ещё учение о центре тяжести материального тела.

     Развитие этого чисто геометрического учения (геометрия масс) тесно связано с именем Архимеда, указавшего, при помощи знаменитого метода исчерпывания, положение центра тяжести многих правильных геометрических форм, плоских и пространственных.

     Общие теоремы о центрах тяжести тел вращения дали греческий математик Папп (III в. н. э.) и швейцарский математик П. Гюльден в XVII в. Развитием своих геометрических методов статика обязана французскому математику П. Вариньону (1687); наиболее полно эти методы были разработаны французским механиком Л. Пуансо, трактат которого “Элементы статики” вышел в 1804 г. Аналитическая статика, основанная на принципе возможных перемещений, была создана знаменитым французским ученым Ж. Лагранжем С развитием ремесел, торговли, мореплавания и военного дела и связанного с ними накопления новых знаний, в XIV и XV вв. - в эпоху Возрождения - начинается расцвет наук и искусств. Крупным событием, революционизировавшим человеческое мировоззрение, явилось создание великим польским астрономом Николаем Коперником (1473 - 1543) учения о гелиоцентрической системе мира, в которой шарообразная Земля занимает центральное неподвижное положение, а вокруг нее по своим круговым орбитам движутся небесные тела: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн.

     Кинематические и динамические исследования эпохи Возрождения были обращены, главным образом, на уточнение представлений о неравномерном и криволинейном движении точки. До этого времени общепринятыми были не соответствующие действительности динамические воззрения Аристотеля, изложенные в его “Проблемах механики”.

     Так, он считал, что для поддержания равномерного и прямолинейного движения тела к нему нужно приложить постоянно действующую силу. Это утверждение представлялось ему согласным с повседневным опытом. О том, что при этом возникает сила трения, Аристотель, конечно, ничего не знал. Также он считал, что скорость свободного падения тел зависит от их веса: “Если половинный вес в некоторое время пройдет столько-то, то удвоенный вес пройдет столько же в половинное время”. Считая, что все состоит из четырех стихий - земли, воды, воздуха и огня, он пишет: “Тяжело все то, что способно нестись к середине или средоточию мира; легко все то, что несется от середины или средоточия мира”. Из этого он сделал вывод: так как тяжелые тела падают к центру Земли, то этот центр является средоточием мира, а Земля неподвижна. Не владея еще понятием об ускорении, которое было позднее введено Галилеем, исследователи этой эпохи рассматривали ускоренное движение как состоящее из отдельных равномерных движений, в каждом интервале обладающих своей собственной скоростью. Галилей еще в 18-летнем возрасте, наблюдая во время богослужения за малыми затухающими колебаниями люстры и отсчитывая время по ударам пульса, установил, что период колебания маятника не зависит от его размаха.

     Усомнившись в правильности утверждений Аристотеля, Галилей начал производить опыты, с помощью которых он, не анализирую причины, установил законы движения тел вблизи земной поверхности. Сбрасывая тела с башни, он установил, что время падения тела не зависит от его веса и определяется высотой падения. Он первым доказал, что при свободном падении тела пройденный путь пропорционален квадрату времени.

     Замечательные экспериментальные исследования свободного вертикального падения тяжёлого тела были проведены Леонардо да Винчи; это были, вероятно, первые в истории механики специально организованные опытные исследования. Период создания основ механики. Практика (главным образом торговое мореплавание и военное дело)

ставит перед механикой XVI - XVII вв. ряд важнейших проблем, занимающих умы лучших ученых того времени. “… Вместе с возникновением городов, крупных построек и развитием ремесла развилась и механика. Вскоре она становится необходимой также для судоходства и военного дела” (Энгельс Ф., Диалектика природы, 1952, стр. 145). Нужно было точно исследовать полет снарядов, прочность больших кораблей, колебания маятника, удар тела. Наконец, победа учения Коперника выдвигает проблему движения небесных тел. Гелиоцентрическое мировоззрение к началу XVI в. создало предпосылки к установлению законов движения планет немецким астрономом И. Кеплером (1571 - 1630).

Он сформулировал первые два закона движения планет:

     1. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

     2. Радиус-вектор, проведенный от Солнца к планете, за равные промежутки времени описывает равные площади.

     Основоположником механики является великий итальянский ученый Г. Галилей (1564 - 1642). Он экспериментально установил количественный закон падения тел в пустоте, согласно которому расстояния, проходимые падающим телом в одинаковые промежутки времени, относятся между собой, как последовательные нечетные числа.

     Галилей установил законы движения тяжелых тел по наклонной плоскости, показав, что, падают ли тяжелые тела по вертикали или по наклонной плоскости, они всегда приобретают такие скорости, которые нужно сообщить им, чтобы поднять их на ту высоту, с которой они упали. Переходя к пределу, он показал, что на горизонтальной плоскости тяжелое тело будет находиться в покое или будет двигаться равномерно и прямолинейно. Тем самым он сформулировал закон инерции. Складывая горизонтальное и вертикальное движения тела (это первое в истории механики сложение конечных независимых движений), он доказал, что тело, брошенное под углом к горизонту, описывает параболу, и показал, как рассчитать длину полета и максимальную высоту траектории. При всех своих выводах он всегда подчеркивал, что речь идет о движении при отсутствии сопротивления. В диалогах о двух системах мира очень образно, в форме художественного описания, он показал, что все движения, которые могут происходить в каюте корабля, не зависят от того, находится ли корабль в покое или движется прямолинейно и равномерно.

     Этим он установил принцип относительности классической механики (так называемый принцип относительности Галилей - Ньютона). В частном случае силы веса Галилей тесно связывал постоянство веса с постоянством ускорения падения, но только Ньютон, введя понятие массы, дал точную формулировку связи между силой и ускорением (второй закон). Исследуя условия равновесия простых машин и плавания тел, Галилей, по существу, применяет принцип возможных перемещений (правда, в зачаточной форме). Ему же наука обязана первым исследованием прочности балок и сопротивления жидкости движущимся в ней телам.

     Французский геометр и философ Р. Декарт (1596 - 1650) высказал плодотворную идею сохранения количества движения. Он применяет математику к анализу движения и, вводя в нее переменные величины, устанавливает соответствие между геометрическими образами и алгебраическими уравнениями.

     Но он не заметил существенного факта, что количество движения является величиной направленной, и складывал количества движения арифметически. Это привело его к ошибочным выводам и снизило значение данных им применений закона сохранения количества движения, в частности, к теории удара тел.

     Последователем Галилея в области механики был голландский ученый Х. Гюйгенс (1629 - 1695). Ему принадлежит дальнейшее развитие понятий ускорения при криволинейном движении точки (центростремительное ускорение). Гюйгенс также решил ряд важнейших задач динамики - движение тела по кругу, колебания физического маятника, законы упругого удара. Он первый сформулировал понятия центростремительной и центробежной силы, момента инерции, центра колебания физического маятника. Но основная его заслуга состоит в том, что он первый применил принцип, по существу эквивалентный принципу живых сил (центр тяжести физического маятника может подняться только на высоту, равную глубине его падения). Пользуясь этим принципом, Гюйгенс решил задачу о центре колебания маятника - первую задачу динамики системы материальных точек. Исходя из идеи сохранения количества движения, он создал полную теорию удара упругих шаров.

     Заслуга формулировки основных законов динамики принадлежит великому английскому ученому И. Ньютону (1643 - 1727). В своем трактате “Математические начала натуральной философии”, вышедшем первым изданием в 1687 г., Ньютон подвел итог достижениям своих предшественников и указал пути дальнейшего развития механики на столетия вперед. Завершая воззрения Галилея и Гюйгенса, Ньютон обогащает понятие силы, указывает новые типы сил (например, силы тяготения, силы сопротивления среды, силы вязкости и много других), изучает законы зависимости этих сил от положения и движения тел. Основное уравнения динамики, являющееся выражением второго закона, позволило Ньютону успешно разрешить большое число задач, относящихся, главным образом, к небесной механике. В ней его больше всего интересовали причины, заставляющие двигаться по эллиптическим орбитам. Еще в студенческие годы Ньютон задумался над вопросами тяготения. В его бумагах нашли следующую запись: “Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояний от центров, вокруг коих они вращаются. Отсюда я сравнил силу, требующуюся для удержания Луны на ее орбите, с силой тяжести на поверхности Земли и нашел, что они почти отвечают друг другу”.

Информация о работе История развития механики