Биоэлектрические потенциалы

Автор: Пользователь скрыл имя, 12 Февраля 2013 в 22:49, реферат

Краткое описание

Биоэлектричество это естественные электрические процессы в живых организмах, лежащие в основе многих физиологических и поведенческих реакций. К проблемам биоэлектричества относят также все эффекты, возникающие в организме на различных его уровнях при воздействии электричества от внешних источников.
Исследование биоэлектричества имеет большое значение для понимания физико-химических и физиологических процессов в живых системах.
Все клетки способны в ответ на действие раздражителей переходить из состояния физиологического покоя в состояние возбуждения. Однако термин «возбудимые ткани» применяется специально по отношению к нерв ной, мышечной и железистой тканям, в которых возбуждение сопровожда ется возникновением электрического импульса, распространяющегося вдоль клеточной мембраны.

Оглавление

I. Введение.

II. Литературный обзор

1. Биоэлектрические потенциалы.
1.1. Краткие исторические сведения.
1.2. Потенциал покоя (ПП, мембранный потенциал покоя).
1.3. Потенциал действия (ПД).
1.4. Постсинаптические потенциалы (ПСП)
1.5. Генераторные потенциалы

III. Материалы и методы

2. Мембранная теория возбуждения
3. Натрий-калиевый насос.

IV. Заключение.

V. Список литературы.

Файлы: 1 файл

Казахский национальный университет имени Аль.docx

— 155.17 Кб (Скачать)

СОДЕРЖАНИЕ.

 

I. Введение.

 

II. Литературный обзор

 

1. Биоэлектрические потенциалы.

1.1. Краткие исторические сведения.

1.2. Потенциал покоя (ПП, мембранный потенциал покоя).

1.3. Потенциал действия (ПД).

1.4. Постсинаптические потенциалы (ПСП)

1.5. Генераторные потенциалы 

 

III. Материалы и методы

 

2. Мембранная теория возбуждения

3. Натрий-калиевый насос.

 

IV. Заключение.

 

V. Список литературы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                  

Введение.

 

Биоэлектричество - электрические явления и процессы, возникающие в живых тканях организма. Также - воздействие электрического тока на живые ткани.

Биоэлектричество это естественные электрические процессы в живых организмах, лежащие в основе многих физиологических и поведенческих реакций. К проблемам биоэлектричества относят также все эффекты, возникающие в организме на различных его уровнях при воздействии электричества от внешних источников.

Исследование биоэлектричества имеет большое значение для понимания физико-химических и физиологических процессов в живых системах. 

Все клетки способны в ответ  на действие раздражителей переходить из состояния физиологического покоя  в состояние возбуждения. Однако термин «возбудимые ткани» применяется  специально по отношению к нерв ной, мышечной и железистой тканям, в  которых возбуждение сопровожда ется возникновением электрического импульса, распространяющегося вдоль клеточной мембраны.

Возбуждение характеризуется совокупностью электрических, темпе ратурных, химических, функциональных и структурных изменений жи вой клетки. Среди них особо важное значение имеют биоэлектрические явления. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Биоэлектрические потенциалы.

 

Биоэлектрические  потенциалы - биоэлектрические явления, возникающие в тканях и отдельных клетках человека, животных и растений, важнейшие компоненты процессов возбуждения и торможения.

Биоэлектрические потенциалы, электрические потенциалы, возникающие в тканях и отдельных клетках человека, животных и растений, важнейшие компоненты процессов возбуждения и торможения. Исследование Б. п. имеет большое значение для понимания физико-химических и физиологических процессов в живых системах и применяется в клинике с диагностической целью (электрокардиография, электроэнцефалография, электромиография и др.).

Первые данные о существовании  Б. п. ("животного электричества") были получены в 3-й четверти 18 в. при изучении природы "удара", наносимого некоторыми рыбами с электрическими органами при защите или нападении. К этому же времени относится начало исследований итальянского физиолога и врача Л. Гальвани, заложивших основу учения о Б. п. Многолетний научный спор (1791—97) между Л. Гальвани и физиком А. Вольта о природе "животного электричества" завершился двумя крупными открытиями: были получены факты о существовании биоэлектрических явлений в живых тканях и открыт новый принцип получения электрического тока с помощью разнородных металлов — создан гальванический элемент (вольтов столб). Правильная оценка наблюдений Гальвани стала возможной лишь после применения достаточно чувствительных электроизмерительных приборов —гальванометров. Первые такие исследования были проведены итальянским физиком К. Маттеуччи (1837). Систематическое изучение Б. п. было начато немецким физиологом Э. Дюбуа-Реймоном (1848), который доказал существование Б. п. в нервах и мышцах в покое и при возбуждении. Но ему не удалось (в силу большой инерционности гальванометра) зарегистрировать быстрые, длящиеся тысячные доли сек колебания Б. п. при проведении импульсов вдоль нервов и мышц. В 1886 немецкий физиолог Ю. Бернштейн проанализировал форму потенциала действия; французский учёный Э. Ж. Марей (1875) применил для записи колебаний потенциалов бьющегося сердца капиллярный электрометр; русский физиолог Н. Е. Введенский использовал (1883) для прослушивания ритмических разрядов импульсов в нерве и мышце телефон, а голландский физиолог В. Эйнтховен (1903) ввёл в эксперимент и клиническую практику струнный гальванометр — высокочувствительный и малоинерционный прибор для регистрации электрических токов в тканях. Значительный вклад в изучение Б. п. внесли русские физиологи: В. В. Правдич-Неминский (1913—21) впервые зарегистрировал электроэнцефалограмму, А. Ф. Самойлов (1929) исследовал природу нервно-мышечной передачи возбуждения, а Д. С. Воронцов (1932) открыл следовые колебания Б. п., сопровождающие потенциал действия в нервных волокнах. Дальнейший прогресс в изучении Б. п. был тесно связан с успехами электроники, позволившими применить в физиологическом эксперименте электронные усилители и осциллографы (работы американских физиологов Г. Бишопа, Дж. Эрлангера и Г. Гассера в 30—40-х гг. 20в.). Изучение Б.п. в отдельных клетках и волокнах стало возможным с разработкой микроэлектродной техники. Важное значение для выяснения механизмов генерации Б. п. имело использование гигантских нервных волокон головоногих моллюсков, главным образом кальмара. Диаметр этих волокон в 50 — 100 раз больше, чем у позвоночных животных, он достигает 0,5—1 мм, что позволяет вводить внутрь волокна микроэлектроды, инъецировать в протоплазму различные вещества и т.п. Изучение ионной проницаемости мембраны гигантских нервных волокон позволило английским физиологам А. Ходжкину, А. Хаксли и Б. Катцу (1947—52) сформулировать современную мембранную теорию возбуждения.

Различают следующие основные виды Б. п. нервных и мышечных клеток: потенциал  покоя, потенциал действия, возбуждающие и тормозные постсинаптические  потенциалы, генераторные потенциалы.

 

1.1. Краткие исторические  сведения.

 
Первые данные о существовании  биоэлектрических потенциалов ("животного  электричества") были получены в 3-й  четверти 18 в. при изучении природы "удара", наносимого некоторыми рыбами сэлектрическими органами при защите или нападении. 

К этому же времени относится  начало исследований итальянского физиолога  и врача Л. Гальвани, заложивших основу учения о биоэлектрических потенциалах. Многолетний научный спор (1791—97) между Л. Гальвани и физиком А. Вольта о природе "животного электричества" завершился двумя крупными открытиями: были получены факты о существовании биоэлектрических явлений в живых тканях и открыт новый принцип получения электрического тока с помощью разнородных металлов — создан гальванический элемент (вольтов столб).

Правильная оценка наблюдений Гальвани стала возможной лишь после применения достаточно чувствительных электроизмерительных приборов — гальванометров. Первые такие исследования были проведены итальянским физиком К. Маттеуччи (1837). Систематическое изучение биоэлектрических потенциалов было начато немецким физиологом Э. Дюбуа-Реймоном (1848), который доказал существование биоэлектрических потенциалов в нервах и мышцах в покое и при возбуждении. 

В 1886 немецкий физиолог Ю. Бернштейн  проанализировал форму потенциала действия; французский учёный Э. Ж. Марей (1875) применил для записи колебаний  потенциалов бьющегося сердца капиллярный  электрометр. Русский физиолог Н. Е. Введенский использовал (1883) для прослушивания  ритмических разрядов импульсов  в нерве и мышце телефон, а  голландский физиолог В. Эйнтховен (1903) ввёл в эксперимент и клиническую практику струнный гальванометр — высокочувствительный и малоинерционный прибор для регистрации электрических токов в тканях. 

Значительный вклад в  изучение биоэлектрических потенциалов  внесли русские физиологи: В. В. Правдич-Неминский (1913—21) впервые зарегистрировал электроэнцефалограмму, А. Ф. Самойлов (1929) исследовал природу нервно-мышечной передачи возбуждения, а Д. С. Воронцов (1932) открыл следовые колебания биоэлектрических потенциалов, сопровождающие потенциал действия в нервных волокнах.

Дальнейший прогресс в  изучении биоэлектрических потенциалов  был тесно связан с успехами электроники, позволившими применить в физиологическом  эксперименте электронные усилители  и осциллографы. 

Важное значение для выяснения механизмов генерации биоэлектрических потенциалов имело использование гигантских нервных волокон головоногих моллюсков, главным образом кальмара. Диаметр этих волокон в 50 — 100 раз больше, чем у позвоночных животных, он достигает 0,5—1 мм, что позволяет вводить внутрь волокна микроэлектроды, инъецировать в протоплазму различные вещества и т.п. Изучение ионной проницаемости мембраны гигантских нервных волокон позволило английским физиологам А. Ходжкину, А. Хаксли и Б. Катцу (1947—1952) сформулировать современную мембранную теорию возбуждения.

Различают следующие основные виды Б. п. нервных и мышечных клеток: потенциал покоя, потенциал действия, возбуждающие и тормозные постсинаптические  потенциалы, генераторные потенциалы. 

1.2. Потенциал покоя  (ПП, мембранный потенциал покоя).

 

У живых клеток в покое  между внутренним содержимым клетки и наружным раствором существует разность потенциалов (ПП) порядка 60—90мв, которая локализована на поверхностной мембране. Внутренняя сторона мембраны заряжена электроотрицательно по отношению к наружной. ПП обусловлен избирательной проницаемостью покоящейся мембраны для ионов К+. Концентрация Кв протоплазме примерно в 50 раз выше, чем во внеклеточной жидкости, поэтому, диффундируя из клетки, ионы выносят на наружную сторону мембраны положительные заряды, при этом внутренняя сторона мембраны, практически не проницаемой для крупных органических анионов, приобретает отрицательный потенциал. Поскольку проницаемость мембраны в покое для Naпримерно в 100 раз ниже, чем для К+, диффузия натрия из внеклеточной жидкости (где он является основным катионом) в протоплазму мала и лишь незначительно снижает ПП, обусловленный ионами К+. В скелетных мышечных волокнах в возникновении потенциала покоя важную роль играют также ионы Cl-, диффундирующие внутрь клетки. Следствием ПП является ток покоя, регистрируемый между поврежденным и интактным участками нерва или мышцы при приложении отводящих электродов. Мембраны нервных и мышечных клеток (волокон) способны изменять ионную проницаемость в ответ на сдвиги мембранного потенциала. При увеличении ПП (гиперполяризация мембраны) проницаемость поверхностных клеточных мембран для Naи Кпадает, а при уменьшении ПП (деполяризация) она возрастает, причём скорость изменений проницаемости для Na+значительно превышает скорость увеличения проницаемости мембраны для К+.

Потенциал покоя (ПП, мембранный потенциал покоя). У живых клеток в покое между внутренним содержимым клетки и наружным раствором существует разность потенциалов (ПП) порядка 60—90мв, которая локализована на поверхностной мембране. Внутренняя сторона мембраны заряжена электроотрицательно по отношению к наружной (рис. 1). ПП обусловлен избирательной проницаемостью покоящейся мембраны для ионов К(Ю. Бернштейн, 1902, 1912; А. Ходжкин и Б. Катц, 1947). Концентрация Кв протоплазме примерно в 50 раз выше, чем во внеклеточной жидкости, поэтому, диффундируя из клетки, ионы выносят на наружную сторону мембраны положительные заряды, при этом внутренняя сторона мембраны, практически не проницаемой для крупных органических анионов, приобретает отрицательный потенциал. Поскольку проницаемость мембраны в покое для Naпримерно в 100 раз ниже, чем для К+, диффузия натрия из внеклеточной жидкости (где он является основным катионом) в протоплазму мала и лишь незначительно снижает ПП, обусловленный ионами К+. В скелетных мышечных волокнах в возникновении потенциала покоя важную роль играют также ионы Cl-, диффундирующие внутрь клетки. Следствием ПП является ток покоя, регистрируемый между поврежденным и интактным участками нерва или мышцы при приложении отводящих электродов. Мембраны нервных и мышечных клеток (волокон) способны изменять ионную проницаемость в ответ на сдвиги мембранного потенциала. При увеличении ПП (гиперполяризация мембраны) проницаемость поверхностных клеточных мембран для Naи Кпадает, а при уменьшении ПП (деполяризация) она возрастает, причём скорость изменений проницаемости для Naзначительно превышает скорость увеличения проницаемости мембраны для К+.

1.3. Потенциал действия (ПД).

Все раздражители, действующие на клетку, вызывают в первую очередь  снижение ПП; когда оно достигает  критического значения (порога), возникает  активный распространяющийся ответ  — ПД. Во время восходящей фазы ПД кратковременно извращается потенциал  на мембране: её внутренняя сторона, заряженная в покое электроотрицательно, приобретает  в это время положительный  потенциал. Достигнув вершины, ПД начинает падать (нисходящая фаза ПД), и потенциал  на мембране возвращается к уровню, близкому к исходному, — ПП. Полное восстановление ПП происходит только после окончания следовых колебаний потенциала — следовой деполяризации или гиперполяризации, длительность которых обычно значительно превосходит продолжительность пика ПД. Согласно мембранной теории, деполяризация мембраны, вызванная действием раздражителя, приводит к усилению потока Naвнутрь клетки, что уменьшает отрицательный потенциал внутренней стороны мембраны — усиливает её деполяризацию. Это, в свою очередь, вызывает дальнейшее повышение проницаемости для Naи новое усиление деполяризации и т.д. В результате такого взрывного кругового процесса, т. н. регенеративной деполяризации, происходит извращение мембранного потенциала, характерное для ПД. Повышение проницаемости для Naочень кратковременно и сменяется её падением, а следовательно, уменьшением потока Naвнутрь клетки. Проницаемость для К+, в отличие от проницаемости для Na+, продолжает увеличиваться, что приводит к усилению потока Киз клетки. В результате этих изменений ПД начинает падать, что ведёт к восстановлению ПП. Таков механизм генерации ПД в большинстве возбудимых тканей. Существуют, однако, клетки (мышечные волокна ракообразных, нервные клетки у ряда брюхоногих моллюсков, некоторые растительные клетки), у которых восходящая фаза ПД обусловлена повышением проницаемости мембраны не для ионов Na+, а для ионов Ca+. Своеобразен также механизм генерации ПД в мышечных волокнах сердца, для которых характерно длительное плато на нисходящей фазе ПД. Неравенство концентраций ионов Ки Na(или Ca+) внутри и снаружи клетки (волокна) поддерживается специальным механизмом (т. н. "натриевым насосом"), выталкивающим ионы Naиз клетки и нагнетающим ионы Кв протоплазму, требующим затраты энергии, которая черпается клеткой в процессах обмена веществ.

Амплитуда ПД большинства нервных  и мышечных волокон примерно одинакова: 110—120 мв.Длительность ПД варьирует в широких пределах: у теплокровных животных длительность ПД нервных волокон, наиболее быстро проводящих возбуждение, — 0,3—0,4 мсек, у волокон же мышц сердца — 50—600 мсек. В растительных клетках пресноводной водоросли хара ПД продолжается около 20 сек.Характерной особенностью ПД, отличающей его от других форм ответа клетки на раздражение, является то, что он подчиняется правилу "всё или ничего", т. е. возникает только при достижении раздражителем некоторого порогового значения, и дальнейшее увеличение интенсивности раздражителя уже не сказывается ни на амплитуде, ни на продолжительности ПД. Потенциал действия — один из важнейших компонентов процесса возбуждения. В нервных волокнах он обеспечивает проведение возбуждения от чувствительных окончаний (рецепторов) к телу нервной клетки и от неё — к синаптическим окончаниям (см. Синапсы), расположенным на различных нервных, мышечных или железистых клетках. Поступая в эффекторные окончания, ПД вызывает выделение (секрецию) определённой порции специфических химических веществ, т. н. медиаторов, оказывающих возбуждающее или тормозящее влияние на соответствующие клетки. В мышечных волокнах распространяющийся ПД вызывает цепь физико-химических реакций, лежащих в основе процесса сокращения мышц. Проведение ПД вдоль нервных и мышечных волокон осуществляется т. н. локальными токами, или токами действия, возникающими между возбуждённым (деполяризованным) и соседними с ним покоящимися участками мембраны (см.Возбуждение). Токи действия регистрируются обычными внеклеточными электродами; при этом кривая имеет двухфазный характер: первая фаза соответствует приходу ПД под ближний электрод, вторая — под дальний электрод.

Информация о работе Биоэлектрические потенциалы