Биография Гинзбурга. Его научное открытие

Автор: Пользователь скрыл имя, 19 Января 2013 в 16:32, доклад

Краткое описание

Родился в Москве 4 октября 1916. В 1938 окончил физический факультет Московского университета, в 1940 – аспирантуру физфака МГУ и, по его собственному утверждению, «почти случайно» занялся теоретической физикой
С 1940 Гинзбург работал в теоретическом отделе Физического института Академии наук (с 1971 – заведующий отделом), в 1945–1968 – профессор Горьковского университета, а с 1968 – профессор Московского физико-технического института, где создал кафедру проблем физики и астрофизики.

Файлы: 1 файл

ГИНЗБУРГ.docx

— 103.06 Кб (Скачать)

Механизм разрушения понял  немецкий физик В. Мейснер. В 1933 году он обнаружил, что металл в сверхпроводящем состоянии ведет себя как идеальный диамагнетик - полностью выталкивает магнитное поле, так что магнитный поток внутри его становится равным нулю.

Причем это выталкивание происходит вне зависимости от того, было ли поле наложено на материал до его  перехода в сверхпроводящее состояние  или после.

Эффект Мейснера показывает, что сверхпроводимость - гораздо более сложное явление, чем просто потеря электрического сопротивления. Ведь в сверхпроводнике, который помещен во внешнее магнитное поле и сопротивление которого стало равно нулю, магнитное поле должно сохраняться. Более того, это "замороженное" поле должно остаться и после выключения поля внешнего - его станут поддерживать токи сверхпроводимости, индуцированные полем на поверхности сверхпроводника. Опыт, однако, показывает, что ничего похожего не происходит.

При включении внешнего поля на поверхности сверхпроводника  по закону магнитной индукции действительно  наводятся круговые токи. Но их магнитное  поле направлено против поля внешнего, так что суммарное поле внутри проводника становится равно нулю. При этом энергия сверхпроводника  несколько возрастает. А чем больше энергия системы, тем менее устойчиво  ее состояние. По мере роста напряженности  внешнего поля система становится неустойчивой настолько, что при достижении критической  величины Нк самопроизвольно переходит в более выгодное энергетическое состояние с "нормальной" проводимостью. Сверхпроводимость разрушается.

Величина критического поля растет с понижением температуры, но даже вблизи абсолютного нуля остается небольшой. Однако спустя почти четверть века выяснилось, что существует целый  класс сверхпроводящих материалов, которые способны выдерживать очень  сильные магнитные поля.

Рассмотренные свойства сверхпроводников характерны главным образом для  чистых элементов - ртути, свинца, олова. А многие сплавы и вещества с примесями  обнаружили от них отклонения. В  качестве пояснения можно представить  себе структуру из чередующихся тонких слоев нормального и сверхпроводника, помещенную в магнитное поле.

Сверхпроводящие слои вытеснят поле в слои с нормальной проводимостью, и в результате материал станет пропускать без искажений магнитное поле, одновременно имея нулевое сопротивление. В такой слоистой структуре поверхность раздела двух фаз - нормальной и сверхпроводящей - чрезвычайно велика. Если при ее образовании были выдержаны определенные требования к соотношению поверхностных энергий обеих фаз, подобная смешанная структура оказывается устойчивой, энергетически выгодной. Она получила название "сверхпроводник II рода" в отличие от сверхпроводников I рода, речь о которых шла выше. Фактически сверхпроводники II рода обнаружил в 1935-1936 годах выдающийся экспериментатор Л. В. Шубников с коллегами. К сожалению, через год он был репрессирован и погиб.

И только спустя два десятка  лет, в 1957 году, ученик Л. В. Шубникова А. А. Абрикосов на основе теории Гинзбурга-Ландау показал, что в реальном веществе на самом деле нет выделенных слоев. Смешанное состояние сверхпроводника II рода, помещенного в магнитное поле, возникает в виде своего рода нитевидной структуры. Всю толщу сверхпроводника пронизывает огромное количество нитей с нормальной проводимостью, направленных вдоль поля. Радиус этих нитей чрезвычайно мал - доли микрона, порядка размера куперовской пары. Магнитный поток, пронизывающий образец, не только заключен внутри этих нитей, но и захватывает тонкий слой сверхпроводника вокруг них. На большую глубину его не пускают кольцевые мейснеровские токи, окружающие каждую нить. Они получили название "абрикосовские вихри". Магнитный поток квантован: в каждой нити содержится один квант магнитного поля Ф= 2,068.10-15 Вб. Чем сильнее магнитное поле, тем больше вихрей возникает в сверхпроводнике; магнитный поток в нем меняется не непрерывно, а скачками, дискретно. Сверхпроводимость существует только между вихрями, а внутри она разрушена. И когда магнитное поле становится больше определенной величины Нк2, вещество возвращается в состояние с нормальной проводимостью. А при значениях, меньших Нк1, сверхпроводники II рода из смешанного состояния переходят в чисто сверхпроводящее, превращаясь в сверхпроводник I рода. Поэтому у них имеется два критических значения магнитного поля.

Абрикосовские вихри не математическая модель, созданная для удобства расчетов, а реальное образование, которое можно увидеть. Для этого торец сверхпроводящего образца припудривают тончайшим порошком ферромагнетика. Его частицы собираются там, где есть магнитное поле, то есть в точках выхода вихрей. В электронный микроскоп видно, что они расположены периодически, образуя правильную решетку с треугольными ячейками.

На сверхпроводники II рода сразу же обратили внимание как на материал для обмоток мощных электромагнитов. Но электрический ток, протекая по сверхпроводнику, находящемуся в смешанном состоянии, взаимодействует с магнитными полями абрикосовских вихрей. Возникает сила, заставляющая вихри мигрировать по сверхпроводнику. При их движении возникает своего рода трение, приводящее к выделению тепла, то есть появлению электрического сопротивления. Чтобы помешать вихрям двигаться, сверхпроводящие кабели делают в виде пучков тончайшей проволоки из сплава титана с ниобием и других материалов.

Академик В. Л. Гинзбург, продолжающий активно работать в области сверхпроводимости, считает ближайшей задачей получение  высокотемпературной сверхпроводимости, возникающей при азотных температурах (ВТСП), а в перспективе - и при  комнатных температурах (КТСП).

В 1922 году все тот же Камерлинг-Оннес увидел, что сжиженный им гелий ведет себя совершенно удивительным образом. Налитый в пробирку, он в ней не удерживается, а вытекает через край, поднимаясь по стенкам, и каплями падает с ее нижнего конца.

Если же эту пробирку опустить в ванну с гелием, жидкость станет перетекать до тех пор, пока уровни в пробирке и ванне не сравняются. Этот феномен нашел объяснение только спустя полтора десятка лет, когда  П. Л. Капица открыл явление сверхтекучести (Нобелевская премия 1978 года). (Одновременно и независимо от него это же открытие сделали американцы Г. Ф. Аллен и А. Д. Мейзнер.)

Сверхтекучестью называется свойство жидкого гелия протекать  без трения сквозь капилляры и  узкие щели. Это чисто квантовое явление возникает при температурах ниже так называемой лямбда-точки (Т= 2,17 К). Его нельзя объяснить с позиций классической физики, согласно которым любая жидкость обладает вязкостью и, следовательно, при течении испытывает трение.

П. Л. Капица обнаружил, что  свободное течение гелия через  капилляры диаметром около 10-4 миллиметра наблюдается только в определенной области давлений и температур Т < Тl, в которой гелий кроме сверхтекучести обнаруживает множество других, не менее странных и даже парадоксальных свойств.

Поэтому жидкий гелий в  этой области называют Не II (гелий-два) в отличие от Не I (гелий-один), обычного жидкого газа, ничем не примечательного. Превращение Не I в Не II представляет собой фазовый переход второго рода, он происходит без изменения агрегатного состояния вещества и удельного объема, выделения или поглощения тепла. Однако при этом скачком меняется коэффициент теплового расширения гелия, становясь отрицательным: при охлаждении Не II его плотность уменьшается, а при нагревании - растет. Фазовый переход также сопровождается резким - почти в миллион раз - ростом теплопроводности, так что Не II иногда называют сверхтеплопроводником по аналогии со сверхпроводником. Кроме того, поток тепла между двумя близкими точками в Не II оказался не пропорционален перепаду температур между ними, а при вытекании гелия из сосуда через капилляр температура внутри сосуда повышается. Это означает, что механизм теплопередачи в нем отличается от обычного.

Именно сверхтекуч естью объясняется "эффект Камерлинг-Оннеса": за счет нее Не II образует на стенках сосудов пленку толщиной около 3.10-6 сантиметра (примерно 1000 атомных слоев) и перетекает по ней.

Природный гелий содержит два устойчивых изотопа: 4Не с ядром из двух протонов и двух нейтронов и 3Не, в ядре которого на один нейтрон меньше. Атомов гелия-4 примерно в миллион раз больше, чем гелия-3, поэтому сверхтекучесть определяется только их квантовыми свойствами. Как и любые атомы с ядром, содержащим четное число нуклонов, атомы 4Не - бозоны. Они могут образовывать нечто вроде бозе-конденсата, способного течь без трения, но в котором, однако, сохраняется взаимодействие между атомами. Эта гипотеза привела Л. Д. Ландау к созданию так называемой двухжидкостной модели Не II (Нобелевская премия 1962 года).

В 1941 году он предположил, что Не II состоит из двух компонент, которые проявляют себя только при течении жидкости. Разделить их невозможно, это не смесь, а две формы движения - нормального и сверхтекучего. При стремлении температуры к абсолютному нулю гелий становится полностью сверхтекучим, а при Т > ТНе II переходит в Не I и теряет свойство сверхтекучести. Кроме того, модель предполагает, что сверхтекучая компонента не переносит тепла. Двухжидкостная модель позволила не только объяснить парадоксы, связанные с теплоемкостью и теплопроводностью Не II, но и предсказать целый ряд эффектов, впоследствии обнаруженных экспериментально.

При возникновении разности температур в гелии начинается движение нормальной и сверхтекучей компонент  навстречу одна другой (так как  вся масса гелия находится  в покое). Тепло переносит только нормальная компонента, скорость которой  вследствие подвижности жидкости и  отсутствия сопротивления со стороны  сверхтекучей компоненты значительно  выше скорости обычной теплопередачи.

Узкий капилляр, по которому вытекает из сосуда Не II, пропускает только сверхтекучую компоненту. Масса гелия в сосуде уменьшается, а количество тепла остается прежним - оставшаяся жидкость нагревается.

Развитие методов получения  сверхнизких температур и способов разделения изотопов природного гелия  позволило получить в чистом виде жидкий 3Не. Оказалось, что он становится сверхтекучим при температуре Тс = 0,00265 К и давлении около 34 атмосфер, а при понижении давления температура перехода понижается тоже. Механизм появления сверхтекучести 3Не оказался аналогичным возникновению сверхпроводимости.

Поскольку атомы гелия-три содержат нечетное число нуклонов, они относятся к классу фермионов. Однако при очень низких температурах им становится энергетически выгодно объединяться в пары, подобные куперовским. А далее все идет по уже знакомому сценарию: возникшие бозоны образуют конденсат, обладающий сверхтекучестью. Теоретические основы этого процесса в середине 70-х годов и разработал американский физик Энтони Дж. Леггетт с коллегами. Сверхпроводимость и сверхтекучесть служат наглядным примером, как квантовые свойства микромира - элементарных частиц и атомов - обнаруживают себя в макроскопических масштабах. Путь к пониманию этих непростых явлений был долгим и трудным, он еще далеко не пройден. Немалую часть работы по преодолению этого пути проделали отечественные ученые. Из десяти российских лауреатов Нобелевской премии по физике четверо удостоены ее за работы в области сверхпроводимости и сверхтекучести. Исследования продолжаются, и нужно надеяться, что нам будет кем гордиться и впредь.


Информация о работе Биография Гинзбурга. Его научное открытие