Биография Гинзбурга. Его научное открытие

Автор: Пользователь скрыл имя, 19 Января 2013 в 16:32, доклад

Краткое описание

Родился в Москве 4 октября 1916. В 1938 окончил физический факультет Московского университета, в 1940 – аспирантуру физфака МГУ и, по его собственному утверждению, «почти случайно» занялся теоретической физикой
С 1940 Гинзбург работал в теоретическом отделе Физического института Академии наук (с 1971 – заведующий отделом), в 1945–1968 – профессор Горьковского университета, а с 1968 – профессор Московского физико-технического института, где создал кафедру проблем физики и астрофизики.

Файлы: 1 файл

ГИНЗБУРГ.docx

— 103.06 Кб (Скачать)

ГИНЗБУРГ, ВИТАЛИЙ ЛАЗАРЕВИЧ

(1916)

Родился в Москве 4 октября 1916. В 1938 окончил  физический факультет Московского  университета, в 1940 – аспирантуру  физфака МГУ и, по его собственному утверждению, «почти случайно» занялся  теоретической физикой.

С 1940 Гинзбург работал в теоретическом  отделе Физического института Академии наук (с 1971 – заведующий отделом), в 1945–1968 – профессор Горьковского университета, а с 1968 – профессор  Московского физико-технического института, где создал кафедру проблем физики и астрофизики.

Еще до войны Гинзбург решил ряд задач  квантовой электродинамики. В годы войны он, как и большинство  теоретиков, занимался прикладными  проблемами, связанными с оборонной  тематикой: расплыванием радиоимпульсов при отражении от ионосферы (эта  работа положила начало многолетним  исследованиям распространения  электромагнитных волн в плазме), электромагнитными  процессами в слоистых сердечниках (применительно к антеннам). В 1940-е  годы в сферу его интересов  вошли задачи теории элементарных частиц, связанные с высшими спинами. Весьма значительны работы Гинзбурга  в области теории излучения и  распространения света в твердых  телах и жидкостях. После открытия и объяснения природы эффекта  Вавилова – Черенкова он построил квантовую теорию этого эффекта и теорию сверхсветового излучения в кристаллах (1940). В 1946 совместно с И.М.Франком создал теорию переходного излучения, возникающего при пересечении частицей границы двух сред. Внес заметный вклад в феноменологию сегнетоэлектрических явлений, в теорию фазовых переходов, теорию экситонов, в кристаллооптику.

 

С 1940-х годов и до настоящего времени  Гинзбург активно занимается теорией  сверх проводимости и сверхтекучести. Диапазон его интересов в теории сверхпроводимости простирается от термоэлектрических явлений в сверхпроводниках до проявлений сверхпроводимости во Вселенной. Созданная им в 1950 (совместно с Л.Д.Ландау) полуфеноменологическая теория сверхпроводимости (теория Гинзбурга – Ландау) легла в основу построенной позднее микроскопической теории Бардина – Купера – Шриффера и не потеряла своего значения до настоящего времени, а цикл работ Гинзбурга (совместно с А.А.Абрикосовым и Л.П.Горьковым) был в 1966 удостоен Ленинской премии. В 1958 Гинзбург создал (совместно с Л.П.Питаевским) полуфеноменологическую теорию сверхтекучести (теория Гинзбурга – Питаевского). В 1960 вывел критерий примененности теории среднего поля в фазовых переходах II рода (критерий Гинзбурга). Гинзбург – один из немногих ученых, которые всегда верили в возможность создания высокотемпературных сверхпроводников. В настоящее время он активно участвует в исследованиях механизмов высокотемпературной сверхпроводимости.

С 1946 и по настоящее время имя  Гинзбурга связано с исследованиями радиоизлучения Солнца и общими проблемами радиоастрономии. Именно Гинзбург предсказал существование радиоизлучения от внешних  областей солнечной короны, в 1956–1958 предложил метод изучения структуры  околосолнечной плазмы, а в 1960 –  метод исследования космического пространства по поляризации излучения радиоисточников. Ему принадлежит идея наблюдения дифракции излучения радиоисточников  на крае лунного диска. К сфере  его интересов относятся проблемы происхождения и состава космических  лучей, магнитотормозного излучения  в межгалактических магнитных полях. Одним из первых Гинзбург понял важнейшую  роль рентгеновской и гамма-астрономии; в частности, в оценке протонно-ядерной компоненты космических лучей (подобно тому, как радиоастрономия дает сведения об их электронной компоненте).

Гинзбург  – популяризатор науки, автор  целого ряда книг и статей по различным  проблемам современной физики и  астрофизики. Еще одна тема его публикаций – деятельность Академии наук в  целом, совершенствование ее тематики и устава, выборы новых членов Академии.

Научная деятельность Гинзбурга получила широкое  признание. Помимо Российской академии наук (член-корреспондент с 1953, действительный член с 1966), он избран членом Лондонского  королевского общества, Национальной академии наук США, Европейской академии, Международной академии астронавтики, Академии наук и искусств США, академий наук Дании, Индии и других стран. Среди научных наград Гинзбу рга – Большая золотая медаль им. М.В.Ломоносова, Золотая медаль им. С.И.Вавилова, премии Российской академии наук – им. Л.И.Мандельштама и им. М.В.Ломоносова, международные премии им. Бардина и им. Вольфа, Золотая медаль Лондонского королевского астрономического общества. В 2003 был удостоен Нобелевской премии вместе сАлексеем Абрикосовым и Энтони Леггеттом.

 

СВЕРХПРОВОДИМОСТЬ И СВЕРХТЕКУЧЕСТЬ

Нобелевской премии по физике 2003 года удостоены академик Виталий Лазаревич Гинзбург, Алексей Алексеевич Абрикосов и Энтони Дж. Леггетт за "пионерский вклад в теорию сверхпроводимости и сверхтекучести" (см. "Наука и жизнь" ╧ 11, 2003 г.). И если сверхтекучесть жидкого гелия до сих пор остается довольно экзотическим явлением, то устройства на основе сверхпроводимости уже стали реальностью. Это магниты ускорителей заряженных частиц, сильноточные цепи питания промышленных установок, магнитно-резонансные томографы (создатели которых, кстати, в том же, 2003 году были удостоены Нобелевской премии в области физиологии и медицины - см. "Наука и жизнь" ╧ 12, 2003 г.) и многое другое. Что же представляют собой эти "сверхсостояния" вещества?

В начале XX века единственным исследователем, сумевшим вплотную приблизиться к абсолютному нулю температур (-273,2оС), был нидерландский физик Хейке Камерлинг-Оннес. Это позволило ему открыть сразу несколько удивительных явлений, происходящих при сверхнизких температурах.

В 1911 году, занимаясь сжижением  газов и измерением сопротивления  металлов при очень сильном охлаждении, он обнаружил, что при температуре, близкой к абсолютному нулю - 4,15 К, ртуть скачком теряла сопротивление.

Это противоречило установившимся тогда представлениям: при понижении  температу ры электрическое сопротивление, вначале падая, должно было расти. Однако Камерлинг-Оннес считал, что для чистого металла (он полагал - платины) сопротивление при температуре, близкой к абсолютному нулю, "в пределах экспериментальных ошибок, связанных с достигнутой степенью чистоты, при гелиевых температурах равна нулю". Для подтверждения гипотезы требовалось исследовать образцы чистых металлов, но в то время получить, скажем, чистую платину было непросто. Поэтому Камерлинг-Оннес остановился на ртути, которую нетрудно выделить в чистом виде дистилляцией и фильтрованием. Этот выбор можно назвать особенно удачным потому, что температура сверхпроводящего перехода ртути (4,15 К) ненамного ниже температуры превращения гелия в жидкость - 4,20 К. Если бы исследователь продолжал эксперименты с платиной, золотом и серебром, то сверхпроводимости он, скорее всего, не обнаружил. Но ему повезло, и сразу стало ясно: открыто принципиально новое явление - сверхпроводимость. Открытие датируют 25 ноября 1911 года.

Через два года Камерлинг-Оннес измерил температуру сверхпроводящего перехода свинца (7,2 К), олова и таллия. В том же году он получил Нобелевскую премию за "исследования свойств вещества при низких температурах, приведших, помимо прочего, к получению жидкого гелия". Шли годы, и спустя почти 40 лет, в 1954 году, обнаружилось, что для ниобата олова (Nb3Sn) температура сверхпроводящего перехода равна 18,3 К. Но настоящий прорыв произошел в конце 80-х годов прошлого века, когда удалось получить сложное соединение, содержащее медь (купрат), становившееся сверхпроводником при 100 К. Отсюда было совсем недалеко и до азотных температур: 77,4 К - температура кипения жидкого азота.

Опыты, проведенные со сверхпроводниками, продемонстрировали удивительные вещи. Электрический ток, однажды "запущенный" в сверхпроводник, продолжал течь и после того, как было отключено  напряжение. Магнитик, падающий на сверхпроводящую  пластину, повисал в воздухе: его  поле возбуждало в металле кольцевой  ток, магнитное поле которого отталкивало  магнитик. Причем ток мог продолжать течь, а магнит висеть практически  вечно, до тех пор, пока проводник  охлажден до сверхпроводящего состояния.

Природа этого явления - мгновенного  исчезновения сопротивления при  охлаждении до критической температуры Tк - долго оставалась неясной. И только в 1957 году американские физики Дж. Бардин, Л. Купер и Дж. Шриффер создали теорию, названную по начальным буквам их фамилий БКШ, которая смогла ее объяснить. За эту работу они были удостоены Нобелевской премии по физике 1972 года.

Обычный металл представляет собой кристаллическую решетку, в узлах которой сидят положительные  ионы. А утерянные ими электроны  образуют "электронный газ" - облако частиц, хаотически носящихся внутри кристалла. Атомы в решетке упакованы  очень плотно: среднее расстояние между ними 10-8-10-7 сантиметра. И если каждый атом отдаст хотя бы один валентный электрон, в одном кубическом сантиметре межрешеточного пространства окажется порядка 1022 электронов. Это примерно в 1000 раз больше концентрации молекул газа в воздухе при нормальных условиях.

Когда к проводнику прикладывают напряжение, в кристалле возникает  электрическое поле, заставляющее отрицательные  электроны двигаться в сторону  положительного электрода. Но ионы в  узлах решетки колеблются возле  положения равновесия (эти тепловые колебания тем сильнее, чем выше температура). Электроны при движении сталкивают ся с ионами, теряя энергию, переходящую в тепло. Так возникает электрическое сопротивление, и происходит нагрев проводника.

Электроны принадлежат к  классу фермионов; они имеют спин S = 1/2, а его проекция может принимать только два значения: +1/2 и -1/2 (см. "Наука и жизнь" ╧╧ 10-12, 2003 г.). А фермионы - "индивидуалисты", у каждого из них своя волновая функция, и поэтому они поодиночке взаимодействуют со всеми препятствиями на своем пути. По законам квантовой механики возникновение незатухающего тока в проводнике станет возможным, если все переносчики заряда будет описывать единая волновая функция.

Это произойдет , если заряженные частицы принадлежат к другому классу - классу бозонов, которые имеют целый (в том числе нулевой) спин. В отличие от фермионов бозоны - ярко выраженные "коллективисты". Они не только стремятся собраться вместе, образуя так называемый "бозе-конденсат", но и активно присоединяют к нему свободные бозоны из ближайшего окружения. При этом, чем больше частиц "конденсируется", тем сильнее они воздействуют на окружение. В результате очень скоро практически все бозоны, содержащиеся в объеме, принимают единое квантовое состояние. Возникает как бы одна гигантская "частица", состоящая из неизмеримо большого числа первичных бозонов.

Такое образование активно  сопротивляется любому воздействию, стремящемуся изменить состояние кого-либо из членов этого коллектива, то есть вырвать  его из "конденсата". И, значит, абсолютно одинаковые, неразличимые бозоны, двигаясь как одно целое  сквозь кристалл, не станут реагировать  ни на какие препятствия, будь то микроскопические дефекты кристаллической решетки или ионы в ее узлах. И если они несут заряды, возникает незатухающий ток сверхпроводимости.

Но электроны, будучи фермионами, такого "конденсата" образовать не могут. Как же тогда возникает сверхпроводимость и откуда в металле взялись бозоны? На этот вопрос ответил Л. Купер.

В 1956 году он показал, что  электроны при определенных условиях могут "слипаться" в пары. При  этом их спины обязательно должны быть антипараллельными - объединяться способны только электроны со спинами +1/2 и -1/2: фермионам нельзя находиться в одном состоянии. Суммарный спин такой куперовской пары оказывается равным нулю - возникает бозон. И вот эти-то бозоны уже без сопротивления движутся по кристаллу.

Образование куперовских пар кажется явлением невероятным: электроны заряжены одноименно и, следовательно, должны отталкиваться. Это, безусловно, верно, но только для пустого пространства. А в кристалле электрон взаимодействует с ионами решетки, притягивая их и создавая избыточный положительный заряд. Его величина может быть больше отрицательного заряда электрона, и тогда соседний электрон втянется в заряженную область.

В сверхпроводнике такое  притяжение преобладает над расталкиванием, поэтому все электроны быстро объединяются в пары, они конденсируются, и эта квантовая жидкость без  трения (то есть электрического сопротивления) течет по кристаллу. С ростом температуры  энергия электронов повышается, куперовские пары распадаются (или не успевают образоваться), и сверхпроводимость исчезает.

Но еще за шесть лет  до работ Л. Купера, в 1950 году, В. Л. Гинзбург и Л. Д. Ландау создали так называемую Y-теорию (пси-теорию), известную также как теория Гинзбурга-Ландау. Для описания сверхпроводимости в ней вводится макроскопическая волновая функция Y(r), определяющая плотность электронов в сверхпроводнике.

В этой функции появляется некий эффективный заряд е*, величину которого авторы оценили как равную 2-3 е. И только после создания БКШ-теории Л. П. Горьков показал, что е* = 2е точно, и стало ясно, что речь в теории шла именно о куперовских парах.

Теория Гинзбурга-Ландау, созданная более полувека назад, и сегодня остается основой и  теоретических исследований в области  сверхпроводимости, и практических разработок сверхпроводящих устройств.

Сверхпроводники преподнесли  исследователям еще один сюрприз. Сразу  после открытия сверхпроводимости, в том же 1911 году, Камерлинг-Оннес попытался получить сильное магнитное поле в сверхпроводящей катушке. Идея была очень соблазнительной: сопротивление обмотки отсутствует, значит, ток может быть сколь угодно большим, а напряженность магнитного поля Н пропорциональна его силе. Однако из нее ничего не вышло: даже относительно слабые поля оказывались критическими: при Н > Нк сверхпроводимость разрушалась.

Информация о работе Биография Гинзбурга. Его научное открытие