Актуальные расчеты в страховании

Автор: Наталья Шаронова, 02 Октября 2010 в 23:03, курсовая работа

Краткое описание

Первое солидное общество, занимающееся страхованием жизни, под названием «Эмикебл» («дружеский») возникло в Англии в 1706 г. Однако математика личного страхования была еще слабо развита: система тарифных ставок была простой и не дифференцировалась по возрастам.
Значительный прогресс в развитии страхования жизни был достигнут в деятельности другого страхового общества – «Эквитебл». Впервые стали использоваться таблицы смертности, тарифные ставки дифференцировались по возрастам. Деятельность «Эквитебла» была весьма успешной, что стимулировало появление новых страховых обществ.
В условиях капиталистического производства страхование становится товаром. Это означает, что страховые операции должны приносить прибыль. В то же время страховые тарифы должны быть максимально низкими, чтобы привлечь как можно больше страхователей. То есть возникает необходимость в обеспечении финансовой устойчивости страховых операций. На помощь страховщику приходят статистика и математика.
Статистика возникла в школе «политических арифметиков» Вильяма Петти, основоположника политической экономии. Его школа разделилась на два направления – экономическую и демографическую статистику. Последняя стала применяться в страховании жизни.
Основоположником актуарных расчетов был Джон Граунт. Отметим, что актуарные расчеты – это система математических и статистических методов, при помощи которой определяются финансовые взаимоотношения страховщика и страхователя по долгосрочному страхованию жизни. В 1662г. Д. Граунт опубликовал работу «Естественные и политические наблюдения, сделанные над бюллетенями смертности», которой и положил начало актуарным расчетам. Он первым построил таблицу смертности, которая является отправной точкой при построении тарифов в страховании жизни.

Файлы: 1 файл

курсовая финансы2.doc

— 237.50 Кб (Скачать)

     3.Особенности  построения страховых тарифов

     Вопросы построения страховых тарифов занимают центральное место в деятельности любого страховщика. Значение их определяется тем, что страховщик, как правило, проводит ряд различных по содержанию и характеру видов страхования, требующих адекватного математического измерения взятых по договорам обязательств.

     При организации актуарных расчетов необходимо предусматривать некоторые  общие вопросы, которые не зависят от конкретного вида страхования. К ним относятся: определение нетто-премии, надбавки за риски расходов по ведению дела.

     Тарифная  ставка (премия) - это цена страхового риска и других расходов, адекватное денежное выражение обязательств страховщика по заключенному договору страхования. Совокупность тарифных ставок носит название тарифа.

     Тарифная  ставка, по которой заключается договор  страхования, носит название брутто-ставки, В свою очередь брутто-ставка состоит из двух частей: нетто-ставки и нагрузки. Собственно нетто-ставка выражает цену страхового риска пожара, наводнения, взрыва и т.д. Нагрузка покрывает расходы страховщика по организации и проведению страхового дела, включает отчисления в запасные фонды, содержит элементы прибыли. В основе построения нетто-ставки по любому виду страхования лежит вероятность наступления страхового случая.

     Под вероятностью какого-либо события  А - обозначаемой Р(А) - называется отношение числа случаев М, когда это событие происходит, к общему числу всех равновозможных случаев N, когда оно в принципе могло произойти. Вероятность любого (в том числе и страхового) события заключена в пределах от 0 до 1. Если она достигает своих крайних границ, то страхование на случай наступления данного события проводиться не может. Страховые отношения складываются только тогда, когда заранее неизвестно, произойдет в данном году то или иное событие или нет, т. е. будет ли иметь место страховой случай. В страховании под вероятностью страхового события Р(А) за определенный период времени, например год, понимают отношение количества страховых случаев к числу застрахованных объектов: М/N.

     Частота страховых событий определяется как отношение между числом страховых событий и числом застрахованных объектов - L/N, то есть частота страховых событий показывает, сколько страховых случае в приходится на один объект страхования. Страховое событие (град, ураган, и т. п.) может повлечь за собой несколько страховых случаев, то есть охватить своим вредоносным воздействием многочисленные объекты страхования (случаи).

     Опустошительность страхового события (коэффициент  кумуляции риска) представляет собой отношение числа пострадавших объектов страхования к числу страховых событий - М/L.

     Минимальный коэффициент кумуляции риска  равен 1. Если опустошительность больше 1, то больше кумуляция риска и тем больше цифровое значение между числом страховых событии и числом страховых случае в. По этой причине на практике страховые компании при заключении договоров имущественного страхования стремятся избежать сделок, где есть большой коэффициент кумуляции. 
 
 

     3.1 Калькуляция страховых  расходов

     Определение расходов по страхованию объекта  выполняется с помощью страховой (актуарной) калькуляции, которая позволяет исчислять себестоимость услуги, оказываемой страховщиком, и анализировать расходы, вскрывать недостатка в деятельности страховщика и причины экономических, финансовых и организационных успехов и поражений.

     Калькулируются  затраты по принимаемому риску и  суммы или доли расходов на ведение  дела по обслуживанию договора страхования. Актуарная калькуляция рассчитывается для определения страховых платежей к договору, поэтому прежде всего следует с возможно максимальной точностью измерить в денежном выражении принимаемый страховщиком риск. Для этого необходимо:

     - выделить событие, исчислить математическую вероятности наступления страхового случая, определить частоту и степень тяжести последствий причинения ущерба в отдельных рясковых группах и в целом по страховой совокупности, оценить риск как вероятностное событие и как величину стоимости тарифа, которая должна быть предъявлена к уплате составе Страхового платежа;

     -выделить группы риска в рамках данной страховой совокупности, исследовать их в рамках страховой совокупности с целью создания гомогенной подсовокупности в рамках общей страховой совокупности;

     -проанализировать страховую ситуацию и охарактеризовать ее, оценить те обособленные случайные события, которые приводят к колебаниям в страховых платежах, предъявленных к уплате, учесть выявленные отклонения в стоимости страховой услуги;

     -выявить наличие полного или частичного ущерба, связаннее» со страховым случаем, и потребность измерения величины его распределения во времени и пространстве с помощью специальных таблиц;

     -математически обосновать необходимые расходы на ведение дела страховщиком и выявить тенденции их изменения;

     -рассчитать себестоимость страховой услуги в отношении всей страховой совокупности;

     -математически обосновать необходимые резервные фонды страховщика, предложить (выбрать) конкретные методы и источники формирования этих фондов;

     -выделить специальные резервы, находящиеся в распоряжении страховщика;

     -составить прогноз и выполнить экспертную оценку величин сторнирования договоров страхования;

     -рассчитать нормы ссудного процента и выявить тенденции его изменения в конкретном временном интервале;

     -с помощью принципа эквивалентности установить адекватное равновесие между платежами страхователя и выразить это через страховую сумму и страховое обеспечение, предоставляемые страховым обществом;

     -выполнить расчеты расходов и доходов по размещению полученных страховых взносов в пространстве и времени.

     Рассмотрим  пример. Возьмем 100 застрахованных объектов. Условно статистика показывает. что  ежегодно два из них подвергаются страховому случаю. Какова вероятность того, что в текущем году с любым из застрахованных объектов в рамках выбранной страховой совокупности (100) произойдет реализация риска? Очевидно, она равна 0,02, или 2%. Это означает, что если бы в течение ста лет изучался один и тот же объект (т.е. проводилось 100 испытаний), то при этом с ним за весь период наблюдения произошел бы дважды страховой случай, то есть вероятность последнего для данного объекта можно считать равной 0,02, или 2%.

     Нетто-ставка целиком предназначается для создания фонда выплат страхователям. В связи с этим она должна быть построена таким образом, чтобы обеспечить эквивалентность взаимоотношений между страховщиком и страхователем. Иными словами, страховая компания должна собрать столько страховых премий, сколько предстоит потом произвести выплат страхователям.

     Возвращаясь к приведенному примеру, в котором  имеется 100 застрахованных объектов с  вероятностью страхового случая Р(А) = 0,02. Как определить нетто ставку? Ситуация такова, что если бы каждый из этих объектов был застрахован, скажем, на 200 млн. руб., то ежегодные выплаты при условии, что ущерб больше или равен страховой сумме, составили бы 400 млн. руб. ( 0,02 х 100 х 200 млн. руб.). Если названные выплаты разделить на количество всех застрахованных объектов, то получаем долю одного страхователя в общем страховом фонде, равную 4 млн. руб. (0,02 х 200). Именно такую сумму (страховую премию) должен уплатить каждый страхователь, чтобы у страховой компании оказалось достаточно средств для выплаты страхового возмещения. Здесь 4 млн. руб. - нетто-ставка по данному виду страхования в рамках данной гомогенной страховой совокупности, или 2 тыс. руб. со 100 тыс. руб. страховой суммы.

     Однако  при проведении страхования сумма  выплачиваемого страхового возмещения пострадавшим страхователям, как правило, отклоняется от страховой суммы по ним. Причем если по отдельному договору выплата может быть несколько меньше или равна страховой сумме, то средняя по группе объектов выплата на один договор может и превышать среднюю страховую сумму. При построении нетто-ставки учитывается как раз последний показатель. В этих условиях рассчитанная нетто-ставка корректируется на коэффициент, определяемый отношением средней выплаты к средней страховой сумме на один договор. Коэффициент убыточности (степень уничтожения) b выражает соотношение между суммой выплаченного страхового возмещения Q и страховой суммой всех пострадавших объектов страхования S (b=Q/S). Данный показатель меньше или равен 1.

     В результате получим следующую формулу  для расчета нетто-ставки со 100 тыс. руб. страховой суммы:

     

     где Тn - тарифная нетто-ставка;

     А - страховой случай;

     Р(А) - вероятность страхового случая;

     К - коэффициент отношения средней выплаты к средней страховой сумме на один договор, определяемый как <b> = <Q>/<S>, где скобки < > означают, что берутся средние величины.

     Формула (1) позволяет разграничить понятия «вероятность страхового случая» и «вероятность ущерба». Вероятностью ущерба называется произведение вероятности страхового случая Р(А) на поправочный коэффициент К. Это более общий страховой термин.

     При анализе статистической отчетной информации широко используется понятие убыточности страховой суммы, равной отношению суммарного возмещения по страховым случаям, произошедшим в отчетном периоде, к совокупной сумме застрахованных объектов:

     

     где:

     - соответственно средние величины страхового возмещения, страховой суммы и коэффициента убыточности.

     Зная  количество страховых случаев и  общее число застрахованных объектов, с помощью формулы (2) из статистических данных можно определить среднюю тяжесть ущерба, которая в дальнейшем будет использована при расчете тарифных ставок.

     Методика  расчета тарифных ставок по рисковым видам страхования может применяться  тогда, когда существует статистика или другая информация, которая позволяет рассчитать вероятность наступления события, страховые суммы, выплаты (возмещения). Расчет производится по формуле:

     Тn = Тo + Тr , (3)

     где Тo - основная ставка;

     Тr- надбавка за риск.

     Надбавка  за риск рассчитывается исходя из следующих соображений. В рисковых видах страхования вероятность того, что фактический уровень выплат превысит ожидаемое среднее значение, очень велика - составляет примерно 0,5 - и этим обстоятельством нельзя пренебречь. Отклонение фактического уровня выплат от ожидаемого значения в большую сторону можно определить как риск. Чем шире диапазон возможных отклонений, тем выше риск.

     Неопределенность  конечного результата ставит довольно сложную задачу для актуария. С  одной стороны, размер страховой  премии должен быть достаточен для обеспечения страховых выплат даже в самой неблагоприятной ситуации, в противном случае страховщика ждет разорение. С другой стороны, возможно, хотя и крайне маловероятно, что в самом неблагоприятном случае суммарная страховая выплата окажется равной совокупной страховой сумме всех застрахованных объектов. Если собирать премию в таком размере, то страхование теряет смысл:

     взнос равен страховой стоимости объекта, а страховой случай может и  не произойти. Отсюда ясно, что реальный размер собираемой страховой премии, который не должен заметно превышать средний уровень выплат, не может со стопроцентной гарантией обеспечить превышение взносов над выплатами в любой ситуации. Речь может идти о 95%-й гарантии, 90%-й гарантии и т.д., т.е. о риске оказаться в убытке с вероятностью 5%, 10% и т. д.

     Количественная  оценка риска возможна только тогда, когда известна аналитическая или  графическая функция распределения  вероятностей для величины суммарной  страховой выплаты, т.е. вероятность  реализации каждого возможного ее значения. При наличии такой информации могут быть выделены интервалы возможных значений суммы денежных выплат, сгруппированных по степени их вероятности, а значит, выбирая фиксированное значение величины верхней границы ожидаемых убытков (выплат) - Zmax, можно определить вероятность того, что фактическое значение суммы выплат окажется меньше этого значения. Наоборот, если мы задаем уровень надежности оценки верхней границы G, то из вида функции распределения может быть установлено гарантированное значение верхней границы.

     Разность  между уровнем верхней границы  средним значением суммы страховых  выплат <Z> дает диапазон возможных - с некоторой вероятностью G - неблагоприятных отклонений уровня страховых выплат. Обычно эта величина составляет одно-три стандартных отклонения s величины Z от ее среднего значения <Z>:

Информация о работе Актуальные расчеты в страховании