Автор: Пользователь скрыл имя, 08 Апреля 2013 в 21:44, реферат
Основной целью финансового планирования является понимание и прогнозирование финансового будущего вашего предприятия. Финансовое прогнозирование применяется для перспективной оценки бизнес-планов, определения потребностей будущего финансирования и разработки внутреннего текущего бюджета компании. Прогнозирование финансового будущего компании обычно осуществляется на основе планов финансовой деятельности. (План финансовой деятельности, по сути, является просто перспективной оценкой. Например, предварительный баланс отображает ожидаемое состояние активов и пассивов предприятия на конец определенного периода.)
Вы планируете произвести выборку размером 20 чашек и забраковать всю партию, если более чем в 5% выборки обнаружите недопустимые изъяны в росписи. Другими словами, вы забракуете партию, если выборка содержит две (или больше) бракованные единицы. Какова же вероятность того, что качество всей партии будет соответствовать требуемым критериям и содержать не больше 5% брака?
Чтобы получить ответ на этот вопрос, воспользуйтесь функцией Ехсеl ГИПЕРГЕОМЕТ, используя следующие аргументы.
Число успехов в выборке. В рассматриваемом нами случае этот аргумент будет равен 0 либо 1, т. е. тому количеству чашек с изъянами, при наличии которого в вашей выборке партия будет принята.
Размер выборки. В нашем случае этот аргумент равен 20, т. е. количеству чашек в выборке.
Число успехов в генеральной совокупности. В данном случае этот аргумент будет равен 10. Если бы вы проверяли все 200 чашек, то согласно принятому показателю приемлемого брака (5%) количество бракованных экземпляров не должно превышать 5 единиц.
Размер генеральной совокупности. В данном случае этот аргумент равен 200, т. е. числу «особенных» чашек, которые вы изготовили согласно контракту.
Функция ГИПЕРГЕОМЕТ возвращает значение вероятности, при условии существования определенного размера выборки и генеральной совокупности, а также конкретного успеха в генеральной совокупности, вы сможете получить точное количество успеха. Таким образом, если вы введете
= ГИПРГЕОМЕТ (О; 20; 10; 200) то
Ехсеl возвратит значение 0, 34. Это
означает, что при наличии 10 бракованных
чашек в генеральной
Чтобы определить степень вероятности обнаружения одной бракованной чашки в вашей выборке, введите
= ГИПЕРГЕОМЕТ (1; 20; 10; 200)
и Ехсеl вернет значение 0, 40. Это означает, что существует 40-процентная вероятность обнаружения в выборке только одной бракованной чашки. В сумме эти две вероятности дадут 74%. Таким образом, вероятность того, что во всей партии вы обнаружите 10 бракованных чашек намного выше (74%) вероятности того, что этого не произойдет (100% - 74% = 26%).
Выборочный контроль элементов продукции бесконечной генеральной совокупности
Если вы производите контроль бесконечной генеральной совокупности, то вас интересует значительно большая группа, нежели при проверке конечной генеральной совокупности, т. е. вместо проведения проверки конечной партии продукции, вам необходимо провести тестирование всей производственной линии. Проверяя, например, новый формат счетов-фактур, вы можете испытывать его в течение недели, прежде чем принять окончательно. В данном случае при осуществлении выборочного контроля точности заполнения счетов-фактур вы будете иметь дело с конечной генеральной совокупностью. Если же контроль точности заполнения этих документов производится в рабочем порядке, то вы, скорее всего, будете рассматривать эту выборку, как сделанную из бесконечной генеральной совокупности.
Для составления отчетов вероятности о выборках такого типа воспользуйтесь функцией Ехсеl НОРМСТОБР.
Пример.
Предположим, вы занимаетесь прокатом видеокассет. По мере кассеты посмотрит определенным количеством клиентов, ее качество ухудшается до уровня, при котором вы признаете ее непригодной для дальнейшего проката. Кроме того, некоторые ваши клиенты имеют плохую аппаратуру, что также значительно сокращает срок эксплуатации видеокассеты.
Предположим, вы решили, что не менее 85% видеозаписей, составляющих ваши товарно-материальные запасы, должны быть приемлемого качества. На каждый рабочий день у вас есть определенное (конечное) количество кассет, но ваши товарно-материальные запасы могут изменяться вследствие приобретения новых и изъятия непригодных кассет. Поэтому в данном случае генеральная совокупность записей рассматривается как бесконечная.
Тестирование видеозаписей - процесс весьма длительный, и вам хотелось бы, чтобы размер выборки был поменьше. Грубый метод подсчета, отлично срабатывающий при контроле качества, заключается в проверке того, чтобы оба приведенных ниже уравнения в результате дают больше 5:
n*p
и
n* (р-1)
где n - размер выборки, а р - вероятность приемлемого элемента в генеральной совокупности. Если ваши записи соответствуют определенному вами критерию (т. е. 85% кассет допустимого качества), то значение р будет равно 0, 85. Чтобы убедиться, что и n*р, и n* (р-1) больше 5, показатель n (т. е. размер контрольной выборки) должен быть не меньше 43. Чтобы облегчить обработку данных, остановитесь на 50.
Описанный выше грубый эмпирический метод обусловлен наличием связи между биномиальным и нормальным распределением. Выборочное распределение двоичной переменной (например, бракованный/приемлемый) аналогично нормальному распределению, при котором значения и n*р, и n* (1-р) больше 5.
При проверке произвольно выбранных 50 экземпляров вы обнаруживаете, что три из них - бракованные, а 47 - приемлемые (т. е. 94% контрольной выборки). Какова же вероятность того, что, по крайней мере, 85% генеральной совокупности ваших видеозаписей окажутся приемлемыми?
Вы хотите принять
правильное решение относительно бракованных
экземпляров в генеральной
= НОРМСТОБР (0, 95)
В данном случае Ехсеl возвращает число 1, 64. Это критическое значение должно быть не меньше проверочной статистической величины при условии, что вы приняли правильное решение.
Чтобы получить проверочную статистическую величину, подставьте соответствующие значения в формулу Ехсеl:
= (0, 9-0, 85) /КОРЕНЬ (0, 15*0, 85/50)
и в ответе получите 1, 78. В общем виде эта формула выглядит следующим образом:
(х-р) /КОРЕНЬ (р* (р-1) /n)
где х представляет собой процент, приемлемый в выборке, р - гипотетический процент, приемлемый в генеральной совокупности, n - размер выборки, а знаменателем служит стандартное отклонение от показателя р.
Поскольку в данном случае
проверяемая статистическая величина
(1, 78) превосходит критическое
Выборочный контроль брака в элементах продукции
Чтобы сделать вывод о количестве дефектов и разграничить это понятие с количеством бракованных единиц, во многих случаях удобно использовать функцию Ехсеl ПУАССОН.
Пример.
Предположим, вы - менеджер отдела поставок крупной фирмы - обнаружили, что за последнее время намного увеличилось количество жалоб на несвоевременную доставку товаров от поставщиков. Проверив некоторые из них, вы приходите к выводу, что поставки задерживались вследствие наличия ошибок в заказах на поставку (например, из-за неправильного указания цены за единицу продукции, желаемой даты поставки, номеров моделей, а также неточных ссылок на контракт и пр.).
Вы решаете исследовать некоторую выборку заказов на поставку, чтобы определить, действительно ли общий процент брака в каждом бланке настолько высок, чтобы стать достаточной причиной для задержек в поставках.
Далее вы решаете, что заказ на поставку может считаться приемлемым при общем проценте брака, равном 0, 5. Другими словами, если заказ на поставку товара типа А безупречен, а заказ на поставку товара типа В содержит только одну ошибку, то во втором заказе должно содержаться достаточно информации для того, чтобы поставщик все же мог выполнить заказ, либо исправить неправильную информацию. Вы также ограничиваете вероятность того, что средний процент дефекта одного заказа составляет одну вторую дефекта каждого отдельного заказа до 5%.
Затем вы исследуете все неточности в выборке, состоящую из 10 произвольно выбранных заказов на поставку, содержащиеся в них, и обнаруживаете 12 случаев неправильной информации в выборке. Основываясь на всех этих данных, следует ли вам продолжать надеяться на то, что среднее количество ошибок во всех ваших заказах на поставку составляет 0, 5?
Ответить на этот вопрос вам поможет функция ПУАССОН. Для этого введите в ячейку рабочего листа следующее:
1-ПУАССОН (11; 5; ИСТИНА)
и функция возвратит вам значение 0, 005. Первый аргумент (11=12 - 1) представляет собой число обнаруженных вами неточностей минус один. Второй аргумент (5) - это количество ошибок, которое вы рассчитываете обнаружить в десяти заказах на поставку при условии, что среднее число неточностей было 0, 5. Третий аргумент, ИСТИНА, определяет форму возвращаемого распределения Пуассона, т. е. сумму вероятности для нулевого количества неточностей в документах плюс вероятность одной неточности и т. д.
Ранее было решено, что вероятность принятия неправильного решения составляет 5%, или 0, 05. Поскольку число 0, 005 значительно меньше числа 0, 05, то вы отвергаете предположение, что все заказы на поставку содержат не более 0, 5 ошибок в каждом. Очевидно, что в данной ситуации следует произвести проверку качества подготовки вашего персонала к работе с новой системой, а также убедиться, что сама эта система работает правильно.
Заключение.
Долгосрочные тенденции мирового хозяйственного развития, отражающие конкретную среду функционирования современного социально-ориентированного рынка, дают представление об основных параметрах, формах, закономерностях развития цивилизованной рыночной экономики и о ее механизмах. Ядром долгосрочных тенденций является дальнейшее развитие НТР и переход ее в новое качество-информационную революцию (ИР) с середины 70-х гг. ХХ-го века.
К главным индикаторам информационной экономики относятся:
широкое распространение информационных технологий в материальном и нематериальном производстве, в том числе, в образовании, здравоохранении, науке и т. п.;
наличие разветвленных коммуникационных информсетей в национальных и международных масштабах, включая системы спутниковой связи, и соответствующей сети банков данных;
относительно свободная циркуляция информации и ее превращение в главный фактор экономического развития.
Развитие информационной
компоненты экономического роста, движущей
силой которой является производство
и потребление различной
В данной курсовой работе рассмотрены методы использования имеющихся данных для составления прогнозов будущих доходов и расходов на основе показателя степени объема продаж. Это помогает в разработке планов финансовой деятельности и балансов компании. Планы финансовой деятельности позволяют исследовать, какое влияние могут оказать изменения условий (либо некоторых аспектов доходов и расходов) на операции и прибыль предприятия.
Текущий бюджет, помогающий
планировать и управлять
Основным аспектом всего этого процесса является качество прогнозов. Процесс прогнозирования опасен и полон ловушек. Чтобы сделать более или менее точный прогноз, необходима правильно составленная и точная базовая линия данных. Необходимо выбрать наиболее подходящий подход (с применением скользящего среднего, регрессии или сглаживания).
Даже если кажется, что все сделано правильно, необходимо помнить, что условия имеют свойство неожиданно меняться, превращая столь тщательно составленный прогноз в слепую догадку. Любой прогноз следует рассматривать с определенной долей скептицизма. Чем с большим количеством переменных вы работаете в процессе создания прогноза, тем больше у вас шансов увидеть будущее своей фирмы. Изменения в одном прогнозе могут послужить подсказкой того, что другой прогноз также может измениться.
Кроме того в работе описаны различные способы построения x- и s-диаграмм для статистического контроля и p-диаграмм для контроля функционирования системой с помощью Excel. На примере емкости гибких дисков, продолжительности телефонных разговоров, а также маржи прибыли продаж за день было показано, что x- и s-диаграммы удобно использовать для переменных значений, а p-диаграммы применяются для таких параметров, как процент бракованных единиц продукции в партии произведенных товаров либо в формах составляемых вами документов, которые классифицируются по принципу бракованный/приемлемый. Описанные диаграммы контроля позволяют оценивать характеристики системы во времени.
Также рассмотрены кривые качества продукции, изучение которых позволяет продавцу снизить риск того, что вся партия поставляемых товаров будет отвергнута покупателем из-за несоответствия количества бракованных изделий в статистической контрольной выборке предъявляемому качеству партии, т. к. результат проверки будет завышен. Будучи покупателем, можно использовать кривые качества продукции для снижения степени риска, заключающейся в том, что будет принята некачественная партия товара, поскольку количество бракованных экземпляров в выборке будет заниженным по сравнению с фактическими характеристиками всей партии.
Информация о работе Составление бюджета компании и циклы планирования