Автор: Пользователь скрыл имя, 04 Апреля 2011 в 12:47, курсовая работа
Цель работы:
Изучить производственную функцию Кобба-Дугласа .
Задачи работы:
Дать определение производственной функции Кобба-Дугласа.
Рассмотреть Закон убывающей отдачи.
Рассмотреть Эффект масштаба.
Изучить эластичность функции.
Рассмотреть экономический анализ функции.
Написать и отладить программу, которая находит оптимум фирмы в условиях совершенной конкуренции .
Введение
1. Производственная функция. Основные понятия 4
2. Закон убывающей отдачи 8
3. Эффект масштаба 10
4. Эластичность 12
5. Экономический анализ функции 13
Приложения
Блок-схема 20
Листинг программы 21
Заключение 24
Список использованных источников
Рис. 2. Динамика
долгосрочных средних издержек
I этап: положительный эффект от масштаба |
Увеличение
объема выпуска сопровождается снижением
LATC, что объясняется эффектом экономии
(например, за счет углубления специализации
труда, применения новых технологий,
эффективное использование |
II этап: постоянная отдача от масштаба |
При изменении объема издержки остаются неизменными, то есть рост количества применяемых ресурсов на 10% вызвал рост объемов производства также на 10%. |
III этап: отрицательный эффект масштаба |
Рост объема производства (например, на 7%) вызывает рост LATC (на 10%). Причиной ущерба от масштаба могут быть технические факторы (неоправданные гигантские размеры предприятия), организационные причины (рост и негибкость административно-управляющего аппарата). |
4.
Эластичность функции
(спроса).
Эластичностью
называется относительное
α+β=1
c-const.
E=
Если
процесс описан функцией Кобба-Дугласа,
то она постоянна и равна
5. Экономический
анализ функции
Как уже было сказано, производственная функция отражает функциональную связь между объёмом эффективно используемых факторов производства (трудом и имущественным капиталом) и с их помощью достигаемым выпуском при существующем техническом и организационном знании.
При
субституционной
Субстиционная производственная функция имеет в общем следующее выражение:
где:
K – число производственного капитала
L – число производственных трудовых часов или, другими словами, число производственных единиц гуманного капитала
На
основе условно введённой
При прочих равных увеличение одного из факторов производства ведёт к увеличению выпуска – первая производная положительна.
Однако
предельная производительность возрастающего
фактора уменьшается с
Уровень организационных и технических знаний отображается в соответствующих формах взаимодействий факторов. В рассматриваемом случае уровень знаний постоянен, т.е. в данных рамках предполагается отсутствие технического прогресса. Таким образом, субстиционная функция производства может быть представлена в виде следующего изображения, отражающего взаимосвязь между количеством труда и выпуском при заданном количестве имущественного капитала (рисунок 3
):
Рисунок 3. Связь между производством и производственным трудом
Каждое увеличение количественного параметра имущественного капитала означает смещение кривой вверх и одновременного увеличения предельной производительности труда при заданном количестве рабочей силы, т.е. на основе вытекающего непосредственно из описанного вывода означает и более высокую величину выпуска при увеличении производственного фактора «труд»: кривая OK1 на рисунке показывает более крутой наклон по сравнению с кривой OK0 при любом числе занятых трудом.
С
увеличением количественного
Величина
имущественного капитала принимается
в рамках данного кратковременного
анализа как экзогенно
В 1927 г. Пол Дуглас обнаружил, что если совместить графики зависимости от времени логарифмов показателей реального объема выпуска (y), капитальных затрат (К) и затрат труда (L), то расстояния от точек графика показателей выпуска до точек графиков показателей затрат труда и капитала будут составлять постоянную пропорцию. Затем он обратился к Чарльзу Коббу с просьбой найти математическую зависимость, обладающую такой особенностью, и Кобб предложил следующую субституционную функцию:
Эта функция была предложена примерно 30 годами раньше Филипом Уикстидом (Wicksteed), но они были первыми, кто использовал для ее построения эмпирические данные.
Однако при больших значениях K и L эта функция не имеет экономического смысла, т.к. выпуск все время возрастает при возрастании затрат.
Кинетическая функция (где g - норма технического прогресса за единицу времени) получена умножением функции Кобба-Дугласа на eg, что снимает данную проблему и делает функцию Кобба-Дугласа экономически интересной.
Эластичность выпуска продукции по капиталу и труду равна соответственно a и b, так как
и
аналогичным образом легко
Следовательно, увеличение затрат капитала на 1% приведет к росту выпуска продукции на a процентов, а увеличение затрат труда на 1% приведет к росту выпуска на b процентов. Можно предположить, что обе величины a и b находятся между нулем и единицей. Они должны быть положительными, так как увеличение затрат производственных факторов должно вызывать рост выпуска. В то же время, вероятно, они будут меньше единицы, так как разумно предположить, что уменьшение эффекта от масштаба производства приводит к более медленному росту выпуска продукции, чем затрат производственных факторов, если другие факторы остаются постоянными.
Если a и b в сумме превышают единицу, то говорят, что функция имеет возрастающий эффект от масштаба производства (это означает, что если К и L увеличиваются в некоторой пропорции, то y растет в большей пропорции). Если их сумма равна единице, то это говорит о постоянном эффекте от масштаба производства (y увеличивается в той же пропорции, что и К и L). Если их сумма меньше, чем единица, то имеет место убывающий эффект от масштаба производства (y увеличивается в меньшей пропорции, чем К и L).
В соответствии с допущением о конкурентности рынков факторов производства и b имеют дальнейшую интерпретацию как прогнозируемые доли дохода, полученного соответственно за счет капитала и труда. Если рынок труда имеет конкурентный характер, то ставка заработной платы (w) будет равна предельному продукту труда (dy/dL):
Следовательно, общая сумма заработной платы (wL) будет равна by, а доля труда в общем выпуске продукции (wL/Y) составит постоянную величину b. Аналогичным образом норма прибыли выражается через dy/dK:
и, следовательно, общая прибыль (rК) будет равна ay, а доля прибыли будет постоянной величиной a.
Существует ряд проблем по применению такой функции, особенно в тех случаях, когда она используется для экономики в целом. В частности, даже в тех случаях, когда между выпуском продукции, производственным оборудованием и трудом в производственном процессе существует технологическая зависимость, то совершенно необязательно, что подобная зависимость существует тогда, когда указанные факторы комбинируются в масштабах экономики в целом. Во-вторых, даже если такая зависимость для экономики в целом существует, то нет никаких оснований считать, что она будет иметь простую форму.
При построении производственной функции Кобба–Дугласа параметры A, a, b можно оценить с помощью линейного регрессионного анализа по методу наименьших квадратов (МНК):
1) Производственную функцию Кобба–Дугласа приводят к линейному виду путем логарифмирования
2) При применении МНК цель заключается в минимизации суммы квадратичных отклонений (SSD) между наблюдаемыми величинами ln(yi), (i=1…N; N – количество наблюдений) и соответствующими оценками .
3) Введем векторы
; ;
;
и матрицу
Тогда критерий можно записать в виде
Дифференцируя SSD по вектору Х и приравнивая производную к нулю систему уравнений МНК
или
4) Для оценки критерия значимости выборочных коэффициентов регрессии оценивают дисперсию выборочных коэффициентов
где cii – элементы главной диагонали матрицы .
s2 – дисперсия погрешности измерений.
Оценка s2 определяется по формуле
Рассчитывается значение t – параметра
Если полученное значение t больше, чем табличное ta при (N-3-1) степеней свободы, тогда Xi существенно отлично от нуля при уровне a.
Доверительные границы для определяются по формуле
Тогда вероятность того, что величина Xi действительно находится в этих пределах, составит 1–a.
5) Для оценки адекватности регрессивной модели наблюдаемым величинам объема выпуска y рассчитывается коэффициент множественной детерминации: