Автор: Пользователь скрыл имя, 21 Января 2013 в 15:03, лабораторная работа
Возникновение и развитие метода «затраты-выпуск» в его современном варианте неразрывно связано с именем В. Леонтьева. Леонтьев, по всеобщему признанию, один из самых выдающихся ученых-экономистов 20-го столетия. Международная “Энциклопедия общественных наук” сравнивает его вклад с той ролью, какую в теории экономики сыграли Адам Смит и Джон Мейнард Кейнс, а этих гигантов можно, пожалуй, назвать соответственно Ньютоном и Эйнштейном этой науки.
Лабораторная работа №2
“Модель Леонтьева (уравнение межотраслевого баланса)”
Студентки гр.ДАП-1 Федорович Дарьи
Научная деятельность Леонтьева
Прежде чем перейти
непосредственно к анализу
Возникновение и развитие метода «затраты-выпуск» в его современном варианте неразрывно связано с именем В. Леонтьева. Леонтьев, по всеобщему признанию, один из самых выдающихся ученых-экономистов 20-го столетия. Международная “Энциклопедия общественных наук” сравнивает его вклад с той ролью, какую в теории экономики сыграли Адам Смит и Джон Мейнард Кейнс, а этих гигантов можно, пожалуй, назвать соответственно Ньютоном и Эйнштейном этой науки.
Леонтьев родился
в Петербурге, где посещал университет;
затем он уехал в Берлин
для завершения работы над
диссертацией. В США он прибыл
в 1931 г. в качестве сот рудника
Национального бюро
В. Леонтьев обращается в ЦИК СССР с просьбой о выходе из советского гражданства. Его просьба была удовлетворена, и спустя некоторое время В. Леонтьев стал гражданином США. Жизнь показала, что он сохранил доброе отношение к Родине, доказав это своими поступками.
В Гарвардском университете В. Леонтьев делает заявку на исследование с целью построения таблицы «затраты-выпуск» для США. Комитет, распределяющий финансы, полагает это утопической затеей, но все же выделяет небольшую сумму для одного технического сотрудника. В. Леонтьев приступает к реализации своего главного научного замысла. Он проводит огромную работу по сбору данных о затратах на производство, потоках товаров, распределении доходов, структуре потребления и инвестиций и т.д., используя различные статистические переписи, запрашивая правительственные службы, частные фирмы, банки. Результатом этой работы стала 44-отраслевая таблица «затраты-выпуск» США за 1919 г. На ее основе В. Леонтьев впервые в мире проводит расчеты по системе уравнений межотраслевых связей, определяет полные народнохозяйственные затраты.
Имевшиеся тогда
Принцип В. Леонтьева
- публиковать только работы с
полным количественным
В 1948 г. В. Леонтьев основал Гарвардскую лабораторию экономических исследований, которая стала научным центром по дальнейшей разработке и практическому применению метода «затраты-выпуск». Лаборатория получала крупные субсидии из частных фондов и от государственных организаций. Для работы были привлечены одаренные и энергичные ученые, впоследствии значительно продвинувшие теорию и методологию межотраслевого анализа. В. Леонтьев оставался директором лаборатории вплоть до ее закрытия в 1973 г.
В 1951 г. выходит
вторая монография В.
Таким образом,
в 60—70-х годах метод «
Леонтьев неоднократно
бывал в России и поддерживал
тесные творческие отношения
с Центральным экономико-
СССР и Россия постоянно находились в сфере его интересов и внимания, что он поддерживал тесные контакты с российскими учеными и по мере сил помогал им. Леонтьеву было приятно знать, насколько его ценят и уважают в России.
Теперь же перейдём
непосредственно к анализу
Содержание модели межотраслевого баланса
Классическая модель Леонтьева имеет следующие особенности:
рассматривается экономика, состоящая из "чистых" отраслей, т.е. когда каждая отрасль выпускает один и только свой вид продукта;
взаимосвязь между выпуском
и затратами описывается
вектор спроса на товары
считается заданным, т.е. в модели
отсутствуют как таковые
вектор выпуска товаров вычисляется, исходя из спроса, т.е. отсутствуют как таковые оптимизационные задачи фирм;
равновесие понимается как строгое равенство спроса и предложения, т.е. стоимостной баланс отсутствует, более того, цены товаров в модели не рассматриваются вообще.
Цель построения модели
Леонтьева - анализ перетока товаров
между отраслями экономики,
Основу информационного
обеспечения балансовых
aij = xij / Xj , (i,j = 1, 2,...,n) (1)
Коэффициент прямых материальных затрат показывает, какое количество продукции i-той отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-той отрасли.
С учётом формулы (1) систему уравнений баланса можно переписать в виде:
Хi = (ai1 x1 + ai2 x2 + ... + ain xn) + Yi ,
(i = 1, 2,...,n), или
Xi= ?aijXj+Yi (2)
если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат А, вектор-столбец валовой продукции X и вектор-столбец конечной продукции Y:
|| x1 || || a11 a12 ... a1n || || y1 ||
|| x2 || || a21 a22 ... a2n || || y2 ||
X = || ... ||, A = || ... ... ... ... || , Y = || ... || ,
|| xn || || a1n a2n ... ann || || yn ||
то система уравнений (2) в матричной форме примет вид:
X=AX+Y (3)
Данное уравнение, где A - постоянная технологическая матрица и называется моделью Леонтьева. Интерпретируя выражение AX как затраты, эту систему часто называют моделью "затраты-выпуск”.
С помощью этой модели можно выполнять три варианта расчетов:
задав в модели величины валовой продукции каждой отрасли (Хi), можно определить объёмы конечной продукции каждой отрасли (Yi):
Y= (E-A)X, (4)
(при этом E обозначает
единичную матрицу n-го
Задав величины конечной продукции всех отраслей (Yi), можно определить величины валовой продукции каждой отрасли (Xi):
X=(E-A) Y, (5)
(при этом (E-A )-1 обозначает матрицу, обратную (E-A)).
Для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объёмы конечной продукции, можно найти величины конечной продукции первых отраслей и объёмы валовой продукции вторых, в этом варианте расчёта удобнее пользоваться не матричной формой модели (3), а системой линейных уравнений (2).
Итак, основная задача межотраслевого баланса состоит в отыскании такого вектора валового выпуска X, который при известной матрице прямых затрат A обеспечивает заданный вектор конечного продукта Y.
Переписав матричное уравнение в виде:
(E - A) X = Y,
можно сделать следующие выводы:
Если матрица (E - A) невырожденная (т.е. если ее определитель не равен нулю), тогда имеем:
X = (E - A) -1 Y (6)
Обозначим обратную матрицу В = (E - A)-1
Эта матрица В = (E - A)-1 называется матрицей полных затрат. В матричной форме уравнение (5) теперь запишется как:
X=BY (7)
Элементы матрицы В будем обозначать через bij, тогда из матричного уравнения (7) для любой i-той отрасли можно получить следующее соотношение:
Xi =?biYj, I=1…n
В отличие от коэффициентов
прямых затрат aij коэффициенты bij называются
коэффициентами полных материальных затрат
и включают в себя как прямые,
так и косвенные затраты всех
порядков. Если прямые затраты отражают
количество средств производства, израсходованных
непосредственно при
Чтобы выяснить экономический смысл элементов матрицы В = (bij), будем задаваться единичными векторами конечного продукта:
|| 1 || || 0 || || 0 ||
|| 0 || || 1 || || 0 ||
Y1 = ||... ||, Y2 = ||....||, Yn = ||... || .
|| 0 || || 0 || || 1 ||
Тогда соответствующие векторы валового выпуска будут:
||s11||
||s12||
||s21||
||s22||
Y1 = ||.. .||, Y2 =||... ||, , Yn = ||... ||.
||sn1||
||sn2||
Следовательно, каждый элемент
bij матрицы B есть величина валового
выпуска продукции i-й отрасли,
В соответствии с экономическим смыслом задачи значения xi должны быть неотрицательны при неотрицательных значениях yi и aij.
Необходимо отметить, что прежде чем воспользоваться методом Леонтьева, нужно определить продуктивна ли матрица. Матрица А называется продуктивной, если для любого вектора Y существует решение X уравнения (E - A) X = Y. В этом случае и модель Леонтьева называется продуктивной.
Существует несколько критериев продуктивности матрицы А. Один из них говорит о том, что матрица А продуктивна, если максимум сумм элементов ее столбцов не превосходит единицы, причем хотя бы для одного из столбцов сумма элементов строго меньше единицы. Но данное условие является только достаточным.
Информация о работе Модель Леонтьева (уравнение межотраслевого баланса)