Автор: Пользователь скрыл имя, 20 Января 2011 в 21:25, курсовая работа
Проблема защиты окружающей среды – одна из важнейших задач современности. Выбросы промышленных предприятий, энергетических систем и транспорта в атмосферу, водоемы и недра на современном этапе развития науки и техники достигли таких разме-ров, что в ряде районов, особенно в крупных промышленных центрах, уровни загрязнений в несколько раз превышают допустимые санитарные нормы.
Введение 2
1. Понятие об отходах и их классификация 3
2. Хранение отходов 5
2.1. Выбор места размещения хранилищ 6
2.2. Использование промышленных отходов в качестве заполнителя при рекультивации карьеров 8
2.3. Размещение радиоактивных отходов 9
2.4. Требования безопасности при организации хранилищ 9
3. Перспективные способы повышения экологической безопасности промышленности 11
4. Утилизация твердых отходов различного происхождения 12
4.1. Переработка отходов в высокотемпературной шахте 12
4.2. Переработка отходов на основе сжигания в барботируемом расплаве шлака 12
4.3. Высокотемпературная переработка отходов в электротермическом реакторе 14
4.4. Огневая регенерация 16
4.5. Пиролиз промышленных отходов 16
4.6. Переработка и обезвреживание отходов с применением плазмы 17
5. Утилизация жидких отходов 19
5.1. Механическая очистка сточных вод 19
5.2. Физико-химические методы очистки сточных вод 20
5.3. Биологическая очистка сточных вод 22
5.4. Термическая обработка осадков сточных вод 23
6. Очистка отходящих газов 25
7. Правила учета и оценки отходов 27
7.1. Разработка документации по обращению с отходами 27
7.1.1. Образование отходов 27
7.1.2. Сбор, накопление и размещение отходов 28
7.1.3. Перемещение отходов за пределы территории предприятия 28
7.1.4. Обезвреживание и использование отходов 29
7.2. Получение разрешительных документов на обращение с отходами 29
7.3. Паспортизация отходов 30
7.4. Подготовка, оформление и подписание договоров на передачу отходов с целью размещения, обезвреживания и использования 30
7.5. Процедуры учета отходов 31
7.5.1. Проведение инвентаризации источников образования отходов 31
7.5.2. Проведение инвентаризации объектов размещения отходов 32
7.5.3. Проведение инвентаризации объектов использования и обезвреживания отходов 32
Заключение 33
Список литературы 34
Приложение 1 36
Приложение 2 41
Приложение 3 45
Приложение 4 46
В процессе теплового разжижения густых, вязких и твердых фракций нефтешламов необходимо перекачки их из амбаров и расфасовки в энергетические капсулы и брикеты из наиболее твердых смолистых и энергоемких фракций для последующего использования в качестве топлива.
Процесс горения позволяет использовать в качестве топлива любые горючие отходы. В результате применения данной технологии можно утилизировать отходы, мусор и нефтешламы. Преимущества разработанной на основе этой технологии установки:
- экономичность в эксплуатации (расход топлива и электроэнергии снижен в несколько раз);
-
низкая себестоимость
- высокая степень очистки отходящих газов.
При сжигании нефтепродуктов, включая нефтешламы, резко снижается количество всех токсичных компонентов в отходящих газах на 70 — 80 % первоначальной их концентрации. В пламени исчезают практически все токсичные компоненты СО, СН, NОх, ПАУ, в том числе бенз(а)пирен. При послойном сжигании остатков различных нефтешламов можно регулировать параметры активизирующего горение электрического поля (напряженность, частоту высокого напряжения) в зависимости от их состава и количества для обеспечения оптимальной скорости горения и достижения минимальной токсичности отходящих газов.
С
помощью электроогневого метода утилизации
нефтешламов возможно выделение ценных
фракций нефти (бензин, керосин) [38].
Термические методы обработки осадков сточных вод позволяют существенно сократить их количество и снизить токсичность. Термические методы приобретают большое значение при переработке осадков, шламов и илов. При достаточной степени переработки осадков сточных вод прекратится увеличение массы накапливаемых отходов и появится возможность использовать ценные компоненты осадков в других отраслях.
Самыми
распространенными
Перспективными
для комплексной очистки
Большие перспективы для промышленного применения представляют разряды, образующие низкотемпературную плазму: тлеющий и коронный (барьерный, как частный случай коронного разряда, подразумевающий наличие диэлектрика между электродами). Тлеющий разряд требует поддержания в плазменном реакторе пониженного давления.
Барьерный разряд реализуется
при атмосферном давлении и
потому экономически выгоден,
так как не требует средств
откачки, что упрощает
Одним из главных недостатков плазмохимического метода очистки газообразных отходов является образование побочных продуктов, в частности озона и оксидов азота.
Для
повышения эффективности
Реактор представляет собой
Катализатор с размерами гранул 1.0 – 1.6 мм количестве 0.4 г располагался в зоне плазмы и занимал определенную долю плазменного объема путем фиксации его фторопластовыми кольцами с отверстиями для обеспечения потока газовой смеси.
Выходящий из разрядника газ анализировался в хроматографе (СО, СО2) и отбирался в поглотительные сосуды (SO2, NOx), концентрация веществ определяется по стандартным методикам. Концентрация озона, образующегося в результате возбуждения разряда при обработке газовой смеси, определяется методом абсорбционной спектроскопии по поглощению света на длине волны (λ = 253,7 нм), приходящуюся на максимум сечения фотопоглощения О3 (σ = 7,8 · 10-18 см) [11].
Температура газа в условиях эксперимента температура не превышала 80 ºС [11].
В результате кинетического степень превращения СО в гелии в плазме барьерного реактора в СО2 достигает 60 – 80 % [16].
Количество озона, обращающегося в плазме воздуха (2,5 · 1016 см-3), в среднем в 40 раз больше, чем в исследуемой газовой смеси. Среднее (для всех значений дозы плазменного воздействия) изменение концентрации озона, связанное с его расходованием на реакции окисления СО и SO2, равно 1,93 · 1016 см-3. Следовательно расход О3 на окисление СО и SO2 составляет 97 %.
Совокупность полученных данных позволяет, что имеется возможность создания таких условий плазменного окисления газовой смеси, при которых степень превращения SO2 составит на менее 98 %, а СО – не менее 44 % [11].
Совместные действия неравновесной плазмы на газовые смеси с активационными возможностями катализатора может дать выигрыш энергии, скорости процесса и степенях превращения указанных ингредиентов.
В качестве катализаторов, способствующих ускорению окисления оксидов серы и углерода в воздушной среде, в зону плазмы вводились промышленные катализаторы следующих марок: V2O5 · K2O/SiO2, КДА + 1 % RuO2, G-56 (Ni), JCJ 22-6 (CuO, ZnO/Al2O3), SK “C-2” (БАСФ, V2O5, Pd) [11]. Они используются в промышленности при высокой температуре (выше 400 ºС). Выбор катализаторов обусловлен тем, что в окислительных процессах стабильно работают катализаторы, активными составляющими которых являются металлы платиновой группы (Pt, Pd и др.). Однако из-за дефицитности и дороговизны этих металлов, практически безвозвратные их потери являются причинами поиска катализаторов, работающих на основе более доступного и дешевого сырья, содерхащих в своем составе оксиды хрома и алюминия железа и алюминия, меди и марганца, меди и хрома [16].
При обезвреживании SO2 плазменно-каталитическим методом характерно уменьшение объема плазменной зоны по сравнению с плазменным, т.е. повышается эффективность процесса, а влияние катализатора на конверсию СО менее эффективно (при использовании некоторых катализаторов даже снижается эффективность).
Концентрация озона в плазменно-каталитическом процессе ниже, чем в плазменном, не зависит от времени контакта, и продолжает оставаться выше ПДК в несколько раз. Для деструкции озона используется марганец-цементный катализатор марки ГТТ, не содержащий благородных металлов. Степень его превращения составляет 75 – 95 % при высоких скоростях и до 99 % при низких. Диапазон рабочих температур катализатора составляет 25 – 110 ºС [16].
Известно, что возбуждение барьерного разряда в воздухе сопровождается образованием оксидов азота. Их концентрации на выходе из реактора при обработке газовой смеси составляют NO – 10.9 мг/м3; NO2 – 333.57 мг/м3. Введение V2O5 · K2O/SiO2 в зону плазмы не влияет на изменение NO на выходе из реактора. При высокой дозе плазменного воздействия (0.6 мА · с/см2) и максимальном времени контакта газовой смеси с зоной плазмы выход NOx, а эффективность превращения СО и SO2 максимальна.
В результате применения реактора достигаются следующие результаты [11]:
Система учета обращения с отходами на предприятии является частью системы управления отходами производства и потребления и непосредственно связана с планированием природоохранной деятельности в связи с обращением с отходами.
Организация системы учета предполагает разработку и утверждение документации разработку процедур текущего учета и отчетности обращения с отходами и профессиональную подготовку лиц для работы с опасными отходами.
Документирование системы состоит их следующих этапов [29]:
К основным процедурам первичного учета относятся:
Планирование природоохранной деятельности в связи с обращением с отходами предполагает:
Нормативные
документы разрабатываются