Экономика Характеристика и применение моделей САРМ и АРМ

Автор: Пользователь скрыл имя, 04 Апреля 2012 в 15:38, курсовая работа

Краткое описание

Целью данной работы является изучение характеристики и применения моделей оценки финансовых активов (САРМ и АРТ).
Для достижения поставленной цели решаются следующие задачи:
- изучить линии рынка капитала;
- рассмотреть рыночный и нерыночный риски., эффект диверсификации;
- опделить основные положения модели АРТ;
- изучить выбор факторов, влияющих на доходность и расчет элементов ставки дисконтирования.

Оглавление

ВВЕДЕНИЕ
1. СУЩНОСТЬ МОДЕЛИ ОЦЕНКИ КАПИТАЛЬНЫХ АКТИВОВ (САРМ)
1.1. Линия рынка капитала
1.2. Рыночный и нерыночный риски. Эффект диверсификации
2. ОСНОВНЫЕ ХАРАКТЕРИСТИКА МОДЕЛИ АРБИТРАЖНОГО ЦЕНООБРАЗОВАНИЯ (APT)
2.1. Основные положения модели АРТ
2.2. Выбор факторов, влияющих на доходность и расчет элементов ставки дисконтирования
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

Файлы: 1 файл

32364 Характеристика и применение моделей оценки финансовых активов САРМ АРТ.doc

— 174.50 Кб (Скачать)


2

 

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ             

1. СУЩНОСТЬ МОДЕЛИ ОЦЕНКИ КАПИТАЛЬНЫХ АКТИВОВ (САРМ)             

1.1. Линия рынка капитала             

1.2. Рыночный и нерыночный риски. Эффект диверсификации             

2. ОСНОВНЫЕ ХАРАКТЕРИСТИКА МОДЕЛИ АРБИТРАЖНОГО ЦЕНООБРАЗОВАНИЯ (APT)             

2.1. Основные положения модели АРТ             

2.2. Выбор факторов, влияющих на доходность и расчет элементов ставки дисконтирования             

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ             

ВВЕДЕНИЕ

 

Актуальность темы данной курсовой работы связана с рациональным применением моделей оценки финансовых активов (САРМ и АРТ) на российском финансовом рынке, объективно требующем нахождения оригинальных подходов к оценке и вложению в ценные бумаги (финансовые активы).

Инвесторы сталкиваются с проблемой оценки стоимости активов. Она зависит главным образом от их риска и доходности.

На рынке выдерживается закономерность: чем выше потенциальный риск, тем выше должна быть и ожидаемая доходность. У каждого инвестора формируются свои прогнозы относительно отмеченных параметров. В то же время рынок постоянно движется в направлении определенной равновесной оценки риска и доходности активов. Возможные расхождения в оценках, в первую очередь, связаны с ассиметричностью информации, которой обладают разные инвесторы.

В условиях хорошо развитого рынка новая информация находит быстрое отражение в курсовой стоимости активов. Поэтому для таких условий можно разработать модель, которая бы удовлетворительно описывала взаимосвязь между риском и ожидаемой доходностью активов.

Тем не менее, существует ряд проблем информационного и методологического характера, с которыми приходится сталкиваться при расчетах ставки дисконтирования. Такое положение вещей во многом связано с тем, что наиболее часто используемые методы построения ставки дисконтирования разработаны зарубежными специалистами для использования в развитых странах с эффективно функционирующими финансовыми рынками. Одним из таких методов является метод, основанный на использовании теории арбитражного ценообразования. Метод арбитражного ценообразования нельзя назвать распространенным методом расчета ставки дисконтирования, но, тем не менее, он имеет ряд преимуществ.

Целью данной работы является изучение характеристики и применения моделей оценки финансовых активов (САРМ и АРТ).

Для достижения поставленной цели решаются следующие задачи:

- изучить линии рынка капитала;

- рассмотреть  рыночный и нерыночный риски., эффект диверсификации;

- опделить основные положения модели АРТ;

- изучить выбор факторов, влияющих на доходность и расчет элементов ставки дисконтирования.

Предмет исследования - модели оценки финансовых активов.

В процессе написания работы были использованы книги, монографии, статьи ведущих отечественных и зарубежных ученых экономистов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. СУЩНОСТЬ МОДЕЛИ ОЦЕНКИ КАПИТАЛЬНЫХ АКТИВОВ (САРМ)

 

1.1. Линия рынка капитала

 

Каждый инвестор ставит перед собой две задачи – максимизировать доход и минимизировать риск. В связи с противоречивостью этих задач процесс обоснования инвестиционных решений носит оптимизационный характер. Средством такой оптимизации выступают разнообразные модели оценки стоимости финансовых инструментов инвестирования, в основе которых лежит выявление оптимальной шкалы соотношений уровня доходности и риска таких финансовых инструментов, удовлетворяющих любого инвестора.

Модель оценки стоимости финансовых активов была предложена рядом американских ученых - У. Шарпом, Дж.Линтерном, Дж. Трейноном и Я. Мосстным. Эта модель основана на следующих предположениях:

1.        Инвесторы производят оценку финансовых активов исходя из двух факторов – ожидаемого уровня их доходности и уровня риска, определяемого колеблемостью доходности.

2.        Инвесторы ведут себя рационально: при выборе из двух финансовых активов они при прочих равных условиях изберут тот, по которому ожидаемый уровень доходности выше; соответственно, при выборе из двух финансовых активов они изберут тот, по которому уровень риска ниже.

3.        Существует единая безрисковая ставка процента, по которой инвестор может как инвестировать свой капитал, так и формировать свои инвестиционные ресурсы. Эта ставка одинакова для всех инвесторов.

4.        Налоги и трансакционные издержки, связанные с финансовым инвестированием, несущественны и в процессе расчетов во внимание не принимаются.

5.        Период вложения капитала в финансовые инструменты инвестирования одинаков для всех инвесторов.

6.        Фондовый рынок характеризуется как эффективный – необходимая информация свободно и быстро предоставляется всем инвесторам.

7.        Инвесторы одинаково оценивают ожидаемый уровень доходности и риска каждой из ценных бумаг.[8,c.136]

Модель оценки стоимости финансовых активов исходит из того, что каждая ценная бумага является частью общей совокупности ценных бумаг, обращающихся на фондовом рынке, т.е. частью так называемого "рыночного портфеля". Рыночный портфель включает в себя все ценные бумаги фондового рынка, в котором доля каждой конкретной ценной бумаги равна отношению ее рыночной стоимости к суммарной рыночной стоимости всех ценных бумаг, обращающихся на рынке.

При равновесном сотсоянии спроса и предложения на фондовом рынке стоимость рыночного портфеля отражает среднее соотношение уровня его доходности и риска (определяемого среднеквадратическим отклонением этой доходности).

В САРМ зависимость между риском и ожидаемой доходностью графически можно описать с помощью линии рынка капитала (Capital Market Line - CML), которая представлена на рис. 1.

Рис. 1. Линия рынка капитала

М - это рыночный портфель, rf - актив без риска; rf L - линия рынка капитала; Е(rm) - ожидаемая доходность рыночного портфеля. Все возможные оптимальные (эффективные) портфели, т. е. портфели, которые включают в себя рыночный портфель М, расположены на линии rfL.

Она проходит через две точки - rf и М. Таким образом, линия рынка капитала является касательной к эффективной границе. Все другие портфели, в которые не входит рыночный портфель, располагаются ниже линии rf L. CML поднимается вверх слева направо и говорит о том, что если портфель имеет более высокий риск, то он должен предлагать инвестору и более высокую ожидаемую доходность, и если вкладчик желает получить более высокую ожидаемую доходность, он должен согласиться на более высокий риск.

Наклон СML следует рассматривать как вознаграждение (в единицах ожидаемой доходности) за каждую дополнительную единицу риска, которую берет на себя вкладчик. Когда вкладчик приобретает актив без риска, он обеспечивает себе доходность на уровне ставки без риска rf. Если он стремится получить более высокую ожидаемую доходность, то должен согласиться и на некоторый риск. Ставка без риска является вознаграждением за время, т. е. деньги во времени имеют ценность.[9,c.205]

Дополнительная доходность, получаемая инвестором сверх ставки без риска, есть вознаграждение за риск. Таким образом, вознаграждение лица, инвестировавшего свои средства в рыночный портфель, складывается из ставки rf, которая является вознаграждением за время, и премии за риск в размере Е(rf) - rf. Другими словами, на финансовом рынке его участники уторговывают между собой цену времени и цену риска. CML представляет собой прямую линию. Уравнение прямой можно представить следующим образом:

y = a + bx

где: а - значение ординаты в точке пересечения ее линией СML, оно соответствует ставке без риска rf,

b - угол наклона СML.

Угол наклона определяется как отношение изменения значения функции к изменению аргумента. В нашем случае (см. рис. 1) угол наклона равен:

Поскольку ожидаемая доходность (у) есть функция риска (х), то в уже принятых терминах доходности и риска уравнение CML примет вид:

где: σ- риск i-го портфеля, для которого определяется уровень ожидаемой доходности,

Е(ri) - ожидаемая доходность i-го портфеля.

Данное уравнение можно записать следующим образом:

Таким образом, ожидаемая доходность портфеля равна ставке без риска плюс произведение отношения риска портфеля к риску рыночного портфеля и разности между ожидаемой доходностью рыночного портфеля и ставкой без риска.

CML говорит о соотношении риска и ожидаемой доходности только для широко диверсифицированных портфелей, т. е. портфелей, включающих рыночный портфель, но не отвечает на вопрос, какой ожидаемой доходностью должны обладать менее диверсифицированные портфели или отдельные активы.

Начальная версия САРМ предполагает, что ставки по займам и депозитам одинаковы. В реальной жизни они отличаются. Напомним, что в таких условиях эффективная граница не является линейной, а представляет собой несколько отрезков, как показано на рис. 2. Любой рискованный портфель, расположенный на сегменте M1M2 рассматривается в качестве рыночного.

 

Рис. 2. CAPM при различии в ставках по кредитам и депозитам

Для данного варианта возникают две формулы САРМ и SML, которые рассчитываются относительно двух рыночных портфелей в точках M1 и M2.

для случая, когда E(ri) < Е(rm 1) - (кредитный портфель), и

для случая, когда E(ri) > Е(rm 2) - (заемный портфель),

где: βim 1 - бета, рассчитанная относительно портфеля M1

βim 2 - бета, рассчитанная относительно портфеля M2.

Вторая модификация САРМ возникает для случая, когда имеется актив, который содержит только нерыночный риск. Рыночный риск у него отсутствует, и поэтому его бета равна нулю. Для такой ситуации можно построить SML, которая будет проходить через рыночный портфель и рискованный актив с нулевой бетой. Уравнение САРМ в этом случае принимает вид

где: r0 - рискованный актив с нулевой бетой.

В качестве актива с нулевой бетой можно, например, рассматривать облигацию крупной компании. Если инвестор будет держать ее до погашения, то гарантирует себе определенный уровень процента, который не зависит уже от последующих колебаний цены этой бумаги. Единственный риск, которому подвергается вкладчик, это риск банкротства эмитента, поскольку в этом случае предприятие может и не осуществить причитающиеся ему платежи по облигациям.

Модель САРМ можно построить для облигаций. Она имеет следующий вид:

где: E(ri) - ожидаемая доходность i-й облигации;

Е(rm) - ожидаемая доходность рыночного портфеля облигаций;

βi - коэффициент бета i-й облигации. Он равен отношению дюрации облигации i (Di) к дюрации рыночного портфеля облигаций (Dm).

Формула говорит: если доходность рыночного портфеля облигаций вырастет на 1%, то доходность i-й облигации возрастет на величину β . На рис. 10 представлена линия рынка облигаций. Как следует из формулы, в данной версии САРМ доходность облигации является линейной функцией дюрации облигации.

Рис. 3. Линия рынка облигаций

При использовании данной модели следует помнить, что она завышает доходность долгосрочных облигаций при повышении ставок. Так, для облигации с дюрацией 10 лет формула дает результат, который в 10 раз больше, чем для облигации с дюрацией 1 год. На практике данная разница не столь велика.[5,c.139]

1.2. Рыночный и нерыночный риски. Эффект диверсификации

 

Риск, с которым связано владение активом, можно разделить на две части. Первая составляющая - это рыночный риск. Его также именуют системным или недиверсифицируемым, или неспецифическим. Он связан с состоянием конъюнктуры рынка, общезначимыми событиями, например, войной, революцией. Его нельзя исключить, потому что это риск всей системы. Вторая часть - нерыночный, специфический или диверсифицируемый риск.

Он связан с индивидуальными чертами конкретного актива, а не с состоянием рынка в целом. Например, владелец какой-либо акции подвергается риску потерь в связи с забастовкой на предприятии, выпустившем данную бумагу, некомпетентностью его руководства и т. п. Данный риск является диверсифицируемым, поскольку его можно свести практически к нулю с помощью диверсификации портфеля.

Информация о работе Экономика Характеристика и применение моделей САРМ и АРМ