Нелинейные модели, поддающиеся линеаризации. Подход Бокса-Кокса подбора линеаризующего преобразования

Автор: Пользователь скрыл имя, 05 Марта 2013 в 15:17, курсовая работа

Краткое описание

Основными задачами эконометрики являются: получение наилучших оценок параметров экономико-математических моделей, конструируемых в прикладных целях; проверка теоретико-экономических положений и выводов на фактическом (эмпирическом) материале; создание универсальных и специальных методов для обнаружения статистических закономерностей в экономике.

Оглавление

Введение 1
Нелинейные модели 2
I.I. Нелинейная регрессия 2
I.II. Линеаризация 9
II. Метод Бокса-Кокса 13
Заключение 15
Список литературы 16

Файлы: 1 файл

курсовая2.doc

— 692.00 Кб (Скачать)

Федеральное агентство  по образованию

Государственное образовательное  учреждение высшего

Профессионального образования

« Кубанский Государственный  Университет»

Филиал в г. Кореновске

Специальность прикладная информатика (в экономике)

 

 

Курсовая  работа

 

 

Эконометрика

«Нелинейные модели, поддающиеся линеаризации. 
Подход Бокса-Кокса подбора линеаризующего преобразования»

 

Работу выполнила: Волощук К.В.

Специальность 08081 Прикладная информатика (в экономике)

Научный руководитель: к.ф. –  м.н. Калайдина Г. В.

 

 

 

 

 

 

 

 

 

г. Кореновск. 2010.г 

Содержание:

 

Введение                                                                                                           1

  1. Нелинейные модели                                                                              2

I.I. Нелинейная регрессия                                                                               2

I.II. Линеаризация                                                                                            9

II.      Метод Бокса-Кокса                                                                               13

Заключение                                                                                                      15

Список литературы                                                                                         16

Приложение                                                                                                    17

 

Введение

 

На стыке  экономической практики и математической статистики в начале 30-х годов  зародилась новая самостоятельная дисциплина, получившая название "Эконометрика".

Эконометрика - это наука, которая изучает статистические закономерности в экономике.

Объектом изучения эконометрики, как самостоятельного раздела математической экономики, являются экономико-математические модели, которые строятся с учетом случайных факторов. Такие модели называются эконометрическими моделями. Исследование эконометрических моделей проводится на основе статистических данных об изучаемом объекте и с помощью методов математической статистики.

Основными задачами эконометрики являются: получение наилучших  оценок параметров экономико-математических моделей, конструируемых в прикладных целях; проверка теоретико-экономических  положений и выводов на фактическом (эмпирическом) материале; создание универсальных и специальных методов для обнаружения статистических закономерностей в экономике.

 

 

 

 

 

 

 

 

 

 

    1. Нелинейные модели.

 

I.I. Нелинейная регрессия

Линейная регрессия и методы ее исследования и оценки не имели бы столь важного значения, если бы помимо этого весьма важного, но все же простейшего случая мы не получали бы с их помощью инструмента анализа более сложных нелинейных зависимостей. Нелинейные регрессии могут быть разделены на два существенно различных класса. Первым и более простым является класс нелинейных зависимостей, в которых имеется нелинейность относительно объясняющих переменных, но которые остаются линейными по входящим в них и подлежащим оценке параметрам. Сюда входят полиномы различных степеней и равносторонняя гипербола.

Такая нелинейная регрессия  по включенным в объяснение переменным простым их преобразованием (заменой) легко сводится к обычной линейной регрессии для новых переменных. Поэтому оценка параметров в этом случае выполняется просто по МНК, поскольку  зависимости линейны по параметрам. Так, важную роль в экономике играет нелинейная зависимость, описываемая равносторонней гиперболой:

(1)

 

Ее параметры хорошо оцениваются  по МНК и сама такая зависимость характеризует связь удельных расходов сырья, топлива, материалов с объемом выпускаемой продукции, временем обращением товаров и всех этих факторов с величиной товарооборота. Например, кривая Филлипса характеризует нелинейное соотношение между нормой безработицы и процентом прироста заработной платы.

Совершенно по-другому обстоит дело с регрессией, нелинейной по оцениваемым параметрам, например, представляемой степенной функцией, в которой сама степень (ее показатель) является параметром или зависит от него. Также это может быть показательная функция, где основанием степени является параметр и экспоненциальная функция, в которой опять же показатель содержит параметр или комбинацию параметров. Этот класс, в свою очередь, делится на два подкласса: к одному относятся внешне нелинейные, но по существу внутренне линейные. В этом случае можно привести модель к линейному виду с помощью преобразований. Однако, если модель внутренне нелинейна, то она не может быть сведена к линейной функции.

Таким образом, только модели внутренне нелинейные в регрессионном анализе считаются действительно нелинейными. Все прочие, сводящиеся к линейным посредством преобразований, таковыми не считаются, и именно они рассматриваются чаще всего в эконометрических исследованиях. В то же время это не означает невозможности исследования в эконометрике существенно нелинейных зависимостей. Если модель внутренне нелинейна по параметрам, то для оценки параметров используются численные итеративные процедуры, успешность которых зависит от вида уравнения и от особенностей применяемого итеративного метода.

Вернемся к зависимостям, приводимым к линейным. Если они нелинейны и по параметрам и по переменным, например, вида у = а, умноженному на степень х, показатель которой и есть параметр β (бета):

                                                                                                             (2)

Очевидно, такое  соотношение легко преобразуется  в линейное уравнение простым  логарифмированием:

                                                                                            (3)

После введения новых переменных, обозначающих логарифмы, получается линейное уравнение. Тогда процедура оценивания регрессии состоит в вычислении новых переменных для каждого наблюдения путем взятия логарифмов от исходных значений. Затем оценивается регрессионная зависимость новых переменных. Для перехода к исходным переменным следует взять антилогарифм, т.е. фактически вернуться к самим степеням вместо их показателей (ведь логарифм это и есть показатель степени). Аналогично может рассматриваться случай показательных, или экспоненциальных, функций.

Для существенно нелинейной регрессии невозможно применение обычной процедуры оценивания регрессии, поскольку соответствующая зависимость не может быть преобразована в линейную. Общая схема действий при этом следующая.

  • Принимаются некоторые правдоподобные исходные значения параметров.
  • Вычисляются предсказанные значения у по фактическим значениям х с использованием этих значений параметров.
  • Вычисляются остатки для всех наблюдений в выборке и затем сумма квадратов остатков.
  • Вносятся небольшие изменения в одну или более оценку параметров.
  • Вычисляются новые предсказанные значения у, остатки и сумма квадратов остатков.
  • Если сумма квадратов остатков меньше, чем прежде, то новые оценки параметров лучше прежних и их следует использовать в качестве новой отправной точки.
  • Шаги 4, 5 и 6 повторяются вновь до тех пор, пока не окажется невозможным внести такие изменения в оценки параметров, которые привели бы к изменению суммы остатков квадратов.
  • Делается вывод о том, что величина суммы квадратов остатков минимизирована и конечные оценки параметров являются оценками по методу наименьших квадратов.

Среди нелинейных функций, которые могут быть приведены  к линейному виду, в эконометрике широко используется степенная функция. Параметр b в ней имеет четкое истолкование, являясь коэффициентом эластичности. В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям. Практическое применение логарифмирования и, соответственно, экспоненты возможно тогда, когда результативный признак не имеет отрицательных значений. При исследовании взаимосвязей среди функций, использующих логарифм результативного признака, в эконометрике преобладают степенные зависимости (кривые спроса и предложения, производственные функции, кривые освоения для характеристики связи между трудоемкостью продукции, масштабами производства, зависимость ВНД от уровня занятости, кривые Энгеля).

Иногда используется так  называемая обратная модель, являющаяся внутренне нелинейной, но в ней, в отличие от равносторонней гиперболы, преобразованию подвергается не объясняющая переменная, а результативный признак у. Поэтому обратная модель оказывается внутренне нелинейной и требование МНК выполняется не для фактических значений результативного признака у, а для их обратных значений.

Особого внимания заслуживает  исследование корреляции для нелинейной регрессии. В общем случае парабола второй степени, так же как и полиномы более высокого порядка, при линеаризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции.

Если преобразования уравнения регрессии в линейную форму связаны с зависимой переменной (результативным признаком), то линейный коэффициент корреляции по преобразованным значениям признаков дает лишь приближенную оценку связи и численно не совпадает с индексом корреляции. Следует иметь в виду, что при расчете индекса корреляции используются суммы квадратов отклонений результативного признака у, а не их логарифмов. Оценка значимости индекса корреляции выполняется так же, как оценка надежности (значимости) коэффициента корреляции. Сам индекс корреляции, как и индекс детерминации, используется для проверки значимости в целом уравнения нелинейной регрессии по F-критерию Фишера.

Отметим, что  возможность построения нелинейных моделей как посредством приведения их к линейному виду, так и путем  использования нелинейной регрессии, с одной стороны, повышает универсальность  регрессионного анализа, а с другой — существенно усложняет задачи исследователя. Если ограничиваться парным регрессионным анализом, то можно построить график наблюдений у и х как диаграмму разброса. Часто несколько различных нелинейных функций приблизительно соответствуют наблюдениям, если они лежат на некоторой кривой. Но в случае множественного регрессионного анализа такой график построить невозможно.

При рассмотрении альтернативных моделей с одним  и тем же определением зависимой  переменной выбор прост. Разумнее всего  оценивать регрессию на основе всех вероятных функций, останавливаясь на функции, в наибольшей степени объясняющей изменения зависимой переменной. Если коэффициент детерминации измеряет в одном случае объясненную регрессией долю дисперсии, а в другом — объясненную регрессией долю дисперсии логарифма этой зависимой переменной, то выбор делается без затруднений. Другое дело, когда эти значения для двух моделей весьма близки и проблема выбора существенно осложняется.

Тогда следует  применять стандартную процедуру  в виде теста Бокса — Кокса. Если нужно всего лишь сравнить модели с использованием результативного фактора и его логарифма в виде варианта зависимой переменой, то применяют вариант теста Зарембки. В нем предлагается преобразование масштаба наблюдений у, при котором обеспечивается возможность непосредственного сравнения среднеквадратичной ошибки (СКО) в линейной и логарифмической моделях. Соответствующая процедура включает следующие шаги.

  • Вычисляется среднее геометрическое значений у в выборке, совпадающее с экспонентой среднего арифметического значений логарифма от у.
  • Пересчитываются наблюдения у таким образом, что они делятся на полученное на первом шаге значение.
  • Оценивается регрессия для линейной модели с использованием пересчитанных значений у вместо исходных значений у и для логарифмической модели с использованием логарифма от пересчитанных значений у. Теперь значения СКО для двух регрессий сравнимы, и поэтому модель с меньшей суммой квадратов отклонений обеспечивает лучшее соответствие с истинной зависимостью наблюденных значений.
  • Для проверки того, что одна из моделей не обеспечивает значимо лучшее соответствие, можно использовать произведение 1/2 числа наблюдений на логарифм отношения значений СКО в пересчитанных регрессиях с последующим взятием абсолютного значения этой величины. Такая статистика имеет распределение χ2 с одной степенью свободы (обобщение нормального распределения).

 

 

I.II. Линеаризация

Для оценки параметров нелинейных моделей используются два подхода. Первый подход основан на линеаризации модели и заключается в том, что с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линейного соотношения между преобразованными переменными.

Второй подход обычно применяется в случае, когда подобрать соответствующее линеаризующее преобразование не удается. В этом случае применяются методы нелинейной оптимизации на основе исходных переменных.

Для линеаризации модели в рамках первого подхода могут использоваться как модели, не линейные по переменным, так и не линейные по параметрам.

Если модель нелинейна по переменным, то введением новых переменных ее можно свести к линейной модели, для оценки параметров которой использовать обычный метод наименьших квадратов.

Так, например, если нам необходимо оценить параметры регрессионной модели

(1)

 

Информация о работе Нелинейные модели, поддающиеся линеаризации. Подход Бокса-Кокса подбора линеаризующего преобразования