Автор: Пользователь скрыл имя, 05 Марта 2013 в 19:42, курс лекций
Лекция 1. ВВЕДЕНИЕ В ЦИФРОВУЮ ОБРАБОТКУ СИГНАЛОВ
Лекция 2. ЦИФРОВЫЕ ФИЛЬТРЫ ОБРАБОТКИ ОДНОМЕРНЫХ СИГНАЛОВ.
Лекция 3. ДЕКОНВОЛЮЦИЯ ЦИФРОВЫХ СИГНАЛОВ
Лекция 4. ОБРАБОТКА ИЗОБРАЖЕНИЙ
Лекция 5. РАСПОЗНАВАНИЕ ОБЪЕКТОВ ИЗОБРАЖЕНИЙ
Лекция 6. СВОЙСТВА ВЕЙВЛЕТ-преобразования
Контрастоповышающие фильтры. Если сглаживающие фильтры снижают локальную контрастность изображения, размывая его, то контрастоповышающие фильтры производят обратный эффект и, по существу, являются фильтрами высоких пространственных частот. Ядро контрастоповышающего фильтра в точке (0, 0) имеет значение, большее 1, при общей сумме значений, равной 1. Например, контрастоповышающими фильтрами являются фильтры с ядром, задаваемым матрицами:
Рис. 4.3.1.
Пример применения фильтра приведен на рис. 4.3.1. Эффект повышения контраста достигается за счет того, что фильтр подчеркивает разницу между интенсивностями соседних пикселей, удаляя эти интенсивности друг от друга. Этот эффект будет тем сильней, чем больше значение центрального члена ядра. Характерным артефактом линейной контрастоповышающей фильтрации являются заметные светлые и менее заметные темные ореолы вокруг границ.
Разностные фильтры – это линейные фильтры, задаваемые дискретными аппроксимациями дифференциальных операторов (по методу конечных разностей). Данные фильтры играют важнейшую роль во многих приложениях, например, для задач поиска границ на изображении.
Простейшим дифференциальным оператором является взятие производной по x-координате d/dx, который определен для непрерывных функций. Распространенными вариантами аналогичных операторов для дискретных изображений являются фильтры Прюита (Prewitt) и Собеля (Sobel):
Фильтры, приближающие оператор производной по y-координате d/dy, получаются путем транспонирования матриц.
Простейший алгоритм вычисления нормы градиента по трем смежным точкам:
G(x, y) =
Применяется также упрощенная формула вычислений:
G(x, y) @
Вычисление нормы градиента по четырем смежным точкам (оператор Робертса):
G(x, y) =
G(x, y) @
В алгоритме Собеля используется восемь отсчетов яркости в окрестностях центральной точки:
G(x, y) =
Gxx,y = [Ax-1,y-1+2Ax-1,y+Ax-1,y+1] - [Ax+1,y-1+2Ax+1,y+Ax+1,y+1],
Gyx,y = [Ax-1,y-1+2Ax,y-1+Ax+1,y-1] - [Ax-1,y+1+2Ax,y+1+Ax+1,y+1].
Наряду с более точным определением нормы градиента алгоритм Собеля позволяет определять и направление вектора градиента в плоскости анализа изображения в виде угла j между вектором градиента и направлением строк матрицы:
j(x, y) = argtg(Gyx,y /Gxx,y).
В отличие от сглаживающих
и контрастоповышающих
Аналогично вышеприведенным фильтрам, по методу конечных разностей можно составить фильтры для других дифференциальных операторов. В частности, важный для многих приложений дифференциальный оператор Лапласа (лапласиан) D= 𝝏2/𝝏x2 + 𝝏2/𝝏y2 можно приблизить для дискретных изображений фильтром с матрицей (один из вариантов):
Рис. 4.3.2.
Как видно на рис. 4.3.2, в результате применения дискретного лапласиана большие по модулю значения соответствуют как вертикальным, так и горизонтальным перепадам яркости. Фильтр является, таким образом, фильтром, находящим границы любой ориентации. Нахождение границ на изображении может производиться путем применения этого фильтра и взятия всех пикселей, модуль значения которых превосходит некоторый порог.
Однако такой алгоритм имеет существенные недостатки. Главный из них - неопределенность в выборе величины порога. Для разных частей изображения приемлемый результат обычно получается при существенно разных пороговых значениях. Кроме того, разностные фильтры очень чувствительны к шумам изображения.
Двумерная циклическая свертка. Как и для одномерных сигналов, двумерная свертка может выполняться в области пространственных частот с использованием алгоритмов быстрого преобразования Фурье и перемножением двумерных спектров изображения и ядра фильтра. Она также является циклической, и выполняется обычно в скользящем варианте. С учетом цикличности, для вычисления постоянного шаблона спектра ядра размеры маски фильтра ядра удваиваются по осям и дополняются нулями, и эти же размеры маски используются для выделения скользящего по изображению окна, в пределах которого и выполняется БПФ. Реализация КИХ фильтра с помощью БПФ особенно эффективна, если фильтр имеет большую опорную область.
Нелинейные фильтры. В цифровой обработке изображений широко применяются нелинейные алгоритмы на основе ранговой статистики для восстановления изображений, поврежденных различными моделями шумов. Они позволяют избежать дополнительного искажения изображения при удалении шума, а также значительно улучшить результаты работы фильтров на изображениях с высокой степенью зашумленности.
Введем понятие M-окрестности элемента изображения A(x, y), который является для этой окрестности центральным. В простейшем случае M-окрестность содержит N-пикселей – точки, попадающие в маску фильтра, включая (или не включая) центральный. Значения этих N-элементов можно расположит в вариационном ряду V(r), ранжированном по возрастанию (или убыванию), и вычислить определенные моменты этого ряда, например, среднее значение яркости mN и дисперсии dN. Вычисление выходного значения фильтра, которым заменяется центральный отсчет, выполняется по формуле:
B(x, y) = aА(x, y) + (1-a)mN.
Значение коэффициента a = [0, 1] связывается определенной зависимостью со статистикой отсчетов в окне фильтра, например:
a = dN /(dN + k dS),
где dS – дисперсия шумов по изображению в целом или по S-окрестности при S > M и MÎS, k - константа доверия дисперсии S-окрестностей. Как следует из этой формулы, при k=1 и dN » dS имеет место a » 0.5, а значение B(x, y) = (А(x, y) + mN)/2, т.е. складываются в равной степени от значений центрального отсчета и среднего значения пикселей его M-окрестности. При увеличении значений dN происходит увеличение вклада в результат значения центрального отсчета, при уменьшении – значения mN. Весомость вклада средних значений по M-окрестности можно изменять значением коэффициента k.
Выбор статистической функции и характер зависимости от нее коэффициента a может быть достаточно многообразным (например, по дисперсиям разностей отсчетов в М-окрестности с центральным отсчетом), и зависит как от размеров апертуры фильтра, так и от характера изображений и шумов. По существу, значение коэффициента a должно задавать степень поврежденности центрального отсчета и, соответственно, функцию заимствования для его исправления отсчетов из М-окрестности.
Наиболее простыми и распространенными типами нелинейных фильтров для обработки изображений являются пороговые и медианные фильтры.
Пороговая фильтрация задается, например, следующим образом:
B(x, y) =
Величина p является порогом фильтрации. Если величина центральной точки фильтра превышает среднее значение отсчетов mN в ее М-окрестности на величину порога, то она заменяется средним значением. Значение порога может быть как константой, так и функционально зависимым от величины центральной точки.
Медианная фильтрация определяется следующим образом:
B(x, y) = med {M(x, y)},
т.е. результат фильтрации есть медианное значение пикселей окрестности, форма которой определяется маской фильтра. Медианная фильтрация способна эффективно удалять из изображения помехи, независимо воздействующие на отдельные пиксели. Например, такими помехами являются "битые" пиксели при цифровой съемке, "снеговой" шум, когда часть пикселей заменяется на пиксели с максимальной интенсивностью, и т.п. Преимущество медианной фильтрации заключается в том, что "горячий" пиксель на темном фоне будет заменен темным, а не "размазан" по окрестности.
Медианная фильтрация обладает выраженной избирательностью по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах апертуры фильтра. В то же время монотонную составляющую последовательности медианный фильтр оставляет без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре сохраняют без искажений резкие границы объектов, подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали.
Фильтры экстремумов определяются по правилам:
Bmin(x, y) = min {M(x, y)},
Bmax(x, y) = max {M(x, y)},
т.е. результат фильтрации есть минимальное и максимальное значения пикселей в маске фильтра. Применяются такие фильтры, как правило, для бинарных изображений.
4.4. СЖАТИЕ ИЗОБРАЖЕНИЙ [1i]
Типичное изображение с разрешением порядка 3000×2000 при 24 бит на пиксель для передачи цвета имеет объем 17 мегабайт. Для профессиональных устройств размер получаемого растра изображений может быть значительно больше, глубина цвета до 48 бит на пиксель, а размер одного изображения может быть больше 200 мегабайт. Поэтому весьма актуальными являются алгоритмы сжатия изображений для уменьшения объема данных, представляющих изображение.
Существуют два основных класса алгоритмов:
1. Сжатие без потерь А (lossless compression), если существует такой обратный алгоритм A-1, что для любого h - изображения A[h] = h1 имеем A-1[h1] = h. Сжатие без потерь применяется в таких графических форматах представления изображений, как: GIF, PCX, PNG, TGA, TIFF, и применяется при обработке особо ценной первичной информации (медицинские изображения, аэро- и космоснимки и т.п.), когда даже малейшие искажения нежелательны
2. Сжатие c потерями (lossy compression),
если оно не обеспечивает
Все алгоритмы и утверждения относятся как к изображениям, так и к произвольным последовательностям, элементы которых могут принимать конечное количество значений. При этом следует учитывать, что не существует идеальных алгоритмов, сжимающих без потерь любой набор данных.
Алгоритмы кодирования длины повторения (RLE) базируются на простом принципе: замене повторяющихся групп элементов исходной последовательности на пару (количество, элемент), либо только на количество.
Битовый уровень. Будем рассматривать исходные данные на уровне последовательности битов, например, представляющих черно-белое изображение. Подряд обычно идет несколько 0 или 1, и кодировать можно количество идущих подряд одинаковых цифр. Но количество повторений также надо кодировать битами. Можно считать, что каждое число повторений изменяется от 0 до 7 (3-х битовый код), чередуя последовательность кодов единиц и нулей. Например, последовательности 11111111111 можно сопоставить числа 7 0 4, т.е. 7 единиц, 0 нулей, 4 единицы, при этом имеем новый год – 111 000 100. Чем больше длина последовательностей одинаковых бит, тем больше эффект. Так, последовательность из 21 единицы, 21 нуля, 3 единиц и 7 нулей закодируется так: 111 000 111 000 111 111 000 111 000 111 011 111, т.е. из исходной последовательности длиной 51 бит, имеем последовательность длиной 36 бит.
Байтовый уровень. Предположим, что на вход подается полутоновое изображение, где на значение интенсивности пикселя отводится 1 байт, при этом ожидание длинной цепочки одинаковых битов существенно снижается.
Будем разбивать входной поток на байты (код от 0 до 255) и кодировать повторяющиеся байты парой (количество, буква). Одиночный байт можно не изменять. Так, байты AABBBCDAA кодируем (2A) (3B) (C) (D) (2A).
Однако модификации
данного алгоритма редко
Словарные алгоритмы вместо кодирования только по одному элементу входящей последовательности производят кодирование цепочки элементов. При этом используется словарь цепочек (созданный по входной последовательности) для кодирования новых.
Алгоритм LZ77 был одним из первых, использующих словарь. В качестве словаря используются N последних уже закодированных элементов последовательности. В процессе сжатия словарь-подпоследовательность "скользит" по входящей последовательности. Цепочка элементов на выходе кодируется следующим образом: положение совпадающей части обрабатываемой цепочки элементов в словаре - смещение (относительно текущей позиции), длина, первый элемент, следующий за совпавшей частью цепочки. Длина цепочки совпадения ограничивается сверху числом n. Соответственно, задача состоит в нахождении наибольшей цепочки из словаря, совпадающей с обрабатываемой последовательностью. Если же совпадений нет, то записывается нулевое смещение, единичная длина и первый элемент незакодированной последовательности.
Описанная выше схема кодирования приводит к понятию скользящего окна (sliding window), состоящего из двух частей:
- подпоследовательность уже закодированных элементов длины N-словарь - буфер поиска (search buffer);
- подпоследовательность длины n из цепочки элементов, для которой будет произведена попытка поиска совпадения - буфер предварительного просмотра (look-ahead buffer).
Декодирование сжатой последовательности является расшифровкой записанных кодов: каждой записи сопоставляется цепочка из словаря и явно записанного элемента, после чего производится сдвиг словаря. Словарь воссоздается по мере работы алгоритма декодирования.
Данный алгоритм является
родоначальником целого семейства
алгоритмов. К его достоинствам можно
отнести приличную степень
Алгоритм LZW. Словарь в данном алгоритме представляет собой таблицу, которая заполняется цепочками элементов по мере работы алгоритма. В процессе сжатия отыскивается наиболее длинная цепочка, уже записанная в словарь. Каждый раз, когда новая цепочка элементов не найдена в словаре, она добавляется в словарь, при этом записывается код цепочки. В теории на размер таблицы не накладывается ограничений, однако ограничение на размер позволяет улучшить степень сжатия, т.к. накапливаются ненужные (не встречающиеся) цепочки. Чем больше вхождений имеет таблица, тем больше информации нужно выделять для хранения кодов.
Информация о работе Лекции по "Технологии цифровой обработки сигналов"