Расчет ректификационной колонны

Автор: Пользователь скрыл имя, 14 Февраля 2013 в 15:09, курсовая работа

Краткое описание

Ректификация известна с начала девятнадцатого века, как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию всё шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производных органического синтеза, изотопов, полупроводников и различных других веществ высокой чистоты).

Оглавление

Введение 3
1 Физико – химические основы 4
2 Технологическая схема ректификационной установки 6
3 Расчётная часть 8
3.1 Задание и исходные данные 8
3.2 Материальный баланс и рабочее флегмовое число 9
3.3 Скорость пара и диаметр колонны 12
3.4 Высота слоя насадки и колонны 13
3.5 Гидравлическое сопротивление насадки 15
3.6 Тепловой расчет установки. 15
4 Механический расчет установки 17
4.1 Расчет толщины обечаек 17
4.2 Расчет толщина крышки и днища 18
4.3 Расчёт изоляции колонны 18
4.4 Расчёт штуцеров. 19
4.4.1 Штуцер для ввода исходной смеси. 19
4.4.2 Штуцер для ввода флегмы 19
4.4.3 Штуцер для отвода кубового остатка 19
4.4.4 Штуцер для вывода паров дистиллята 19
4.4.5 Штуцер для ввода паров кубовой смеси 20
4.5 Емкости 20
4.6 Насосы 21
Заключение 23
Список использованной литературы 24

Файлы: 1 файл

Курсовой проект - ПАХТ.doc

— 502.00 Кб (Скачать)

Содержание

Приложение А

Приложение Б

Приложение В

Приложение Г

Приложение Д

 

Введение

Ректификация – процесс  разделения гомогенных смесей летучих  жидкостей путём двустороннего массообмена и теплообмена между неравновесными жидкой и паровой фазами, имеющими различную температуру и движущимися противоположно друг другу.

Разделение осуществляется обычно в колонных аппаратах при многократном или непрерывном контакте фаз. При каждом контакте из  жидкости испаряется преимущественно низкокипящий  компонент, которым обогащаются пары, а из паровой конденсируется преимущественно высококипящий  компонент переходящий в жидкость. В результате обмена компонентами между фазами в конечном счете пары представляют собой почти чистый низкокипящий компонент. Эти пары выходящие из верхней части колоны после их конденсации в отдельном аппарате дают дистиллят (верхний продукт) и флегму - жидкость, возвращающую для орошения колоны и взаимодействия с поднимающимися в колоне парами. Снизу удаляется жидкость представляющая собой почти чистый высококипящий компонент - кубовый остаток (нижний продукт). Часть остатка испаряют в нижней части колоны для получения восходящего потока пара.

Ректификация известна с начала девятнадцатого века, как  один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию всё шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производных органического синтеза, изотопов, полупроводников и различных других веществ высокой чистоты).

 

 

1 Технологическая схема ректификационной установки

Принципиальная схема  ректификационной установки приведена на  рисунке 1.1:

1 - теплообменник-подогреватель; 2,6 - насосы; 3 - емкость для исходной смеси; 4 - кипятильник; 5 - ректификационная колона; 7 - дефлегматор; 8 - холодильник дистиллята; 9 - холодильник кубовой жидкости; 10 - емкость для кубовой жидкости; 11 - емкость для сбора дистиллята

Рисунок 1.1 Принципиальная схема ректификационной установки

 

          Исходную смесь из промежуточной емкости 1 центробежным насосом 2 подают в теплообменник 3, где она подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5, где состав жидкости равен составу исходной смеси xF.

Стекая вниз по колонне, жидкость взаимодействует с поднимающимся  вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка ХW, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают в соответствии с заданным флегмовым числом жидкостью (флегмой) состава хР, получаемой в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения — дистиллята, который охлаждается в теплообменнике 7 и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость — продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и направляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащенный труднолетучим компонентом).

 

2 Расчётная часть

3.1 Задание и исходные данные

Необходимо рассчитать насадочную ректификационную колонну для разделения бинарной смеси диоксан – толуол. GD=1000 кг/ч, xF=45% (мол.), xD=90% (мол.), xW=2% (мол.). Давление в колонне составляет 600 мм рт. ст., смесь поступает при температуре кипения. Равновесные даны о паре и t-x,y диаграмма представлены ниже.

 

Таблица 3.1. Данные о 

равновесном составе пара

x%, мол.

y*%, мол.

t

р

Рис. 3.1. Диаграмма равновесия между паром и жидкостью при постоянном давлении в координатах t-x,y

8,7

12,9

100,72

600

15,2

20

99,58

23,2

31,8

98,38

31

40,6

97,38

41,8

51

96,16

44,9

53,5

96,08

51,4

59,7

95,38

62,2

68,9

94,55

70,5

74,9

94,31

80,6

83,1

93,93

90,8

92

93,65


 

 

Расчет ректификационной колонны сводится к определению  ее основных геометрических размеров — диаметра и высоты. Оба параметра в значительной мере определяются гидродинамическим режимом работы колонны, который, в свою очередь, зависит, от скоростей и физических свойств фаз, а также от типа и размеров насадок.

При проведении процессов  вакуумной ректификации с целью снижения гидравлического сопротивления выбирают специальные виды насадок, обладающих большим свободным объемом. Наиболее правильно выбор оптимального типа и размера насадки может быть осуществлен на основе технико-экономического анализа общих затрат на разделение в конкретном технологическом процессе.

Ориентировочный выбор  размера насадочных тел можно  осуществить исходя из следующих  соображений. Чем больше размер элемента насадки, тем больше ее свободный объем (живое сечение) и, следовательно, выше производительность. Однако вследствие меньшей удельной поверхности эффективность крупных насадок несколько ниже. Поэтому насадку большого размера применяют, когда требуются высокая производительность   и   сравнительно   невысокая   степень   чистоты   продуктов   разделения.

В ректификационных колоннах для разделения агрессивных жидкостей, а также в тех случаях, когда не требуется частая чистка аппарата, обычно применяют керамические кольца Рашига. Но вследствие малой удельной поверхности таких колец и плохой разделяемости данной жидкости для данного случая примем насадку из керамических колец Палля размером 35х35х4. Удельная поверхность такой насадки а=165 м23, свободный объём ε=0,76 м33, насыпная плотность 540 кг/ м3 , dэ=0,018, число штук в м3 18500.

Насадочные колонны  могут работать в различных гидродинамических  режимах: пленочном, подвисания и эмульгирования. В колоннах большой производительности с крупной насадкой осуществление процесса в режиме эмульгирования приводит к резкому уменьшению эффективности разделения, что объясняется существенным возрастанием обратного перемешивания жидкости и значительной неравномерностью скорости паров по сечению аппарата. Ведение процесса в режиме подвисания затруднено вследствие узкого интервала изменения скоростей пара, в котором этот режим существует. Поэтому выберем плёночный режим работы колонны.

3.2 Материальный баланс и рабочее флегмовое число

Обозначим массовый расход дистиллята через GD кг/с, кубового остатка GW кг/с, исходной GF кг/с.

Из уравнений материального  баланса ректификационной колонны  непрерывного действия:

GF = GD + GW;                                                                                       (3.1)  

GFXF = GDXD+ GWXW,                                                                         (3.2)

где GF , GD ,GW – массовые  расходы питания, дистиллята и кубового остатка; XF, XD, XW – содержание легколетучего компонента в питании, дистилляте и кубовом остатке, массовые доли. 

          Для  расчетов выразим концентрации питания, дистиллята и кубового остатка в массовых долях , X.

X = x∙MД/(x∙MД + (1 – x)∙MТ),                                                                       (3.3)

где MД=88, MТ=92 – мольные массы диоксана и толуола.

XF = (88∙0,45)/(88∙0,45 + (1 – 0,45)∙92) = 0,439 кг/кг смеси.

XD = (88∙0,9)/(88∙0,9 + (1 – 0,9)∙92) = 0,896 кг/кг смеси.

XW = (88∙0,02)/(88∙0,02 + (1 – 0,02)∙92) = 0,019 кг/кг смеси.

          Из уравнений материального баланса

GF = GW +1000 

GF∙0,439 = GW∙0,019 +1000∙0,896

GF=2088 кг/ч = 0,580 кг/с; GW = 1088 кг/ч = 0,302 кг/с; GD=0,278 кг/с.

Определяем минимальное  число флегмы по уравнению:

RMIN = (XD-Y*F)/(Y*F–XF);                                                                       (3.4)

где Y*F = 0,54- мольная доля диоксана в паре (из приложения Д).

RMIN = (0,9 – 0,54)/(0,54 – 0,45) = 4.

          Задавшись различными значениями  коэффициентов избытка флегмы β, определим соответствующие флегмовые числа. Графическим построением ступеней изменения концентраций между равновесной и рабочей линиям на диаграмме состав параY – состав жидкости X находим N [1]. Определение N приведены в приложениях А, Б, В, Г, а результаты в таблице 3.2:     

Таблица 3.2

β

1,05

1,35

1,75

2,35

R

4,2

5,4

7

9,4

N

58

42

32

29

N(R+1)

301,6

268,8

256

301,6


Используя данные из таблицы, построим зависимостьN(R+1)=f(R):

Рисунок 3.2 Зависимость N(R+1) от R     

  

Минимальное произведение N(R+1) соответствует флегмовому числу R=6,6 (из рис.3.2).

Уравнения рабочих линий:

а) верхней(укрепляющей) части колонны:

          y = ((R/(R+1))∙x)+(xD/(R+1));                                                               (3.5)                                                                    

          y = 0,868∙x+0,118;

б) нижней (исчерпывающей) части колонны:

          y = (R+F)/(R+1)∙x - (F-1)/(R+1)∙ xW,

где F -  относительный мольный расход питания.

F =  (xD- xW)/(xF-xW) ; F = (0,9-0,02)/(0,45-0,02)=2,047;

y = 1,138∙x – 0,003.

Из приложения Д nт=35 – число теоретических тарелок, nт в = 20 – число теоретических тарелок в верхней части колонны, nт н = 15 – в нижней.

Средние массовые расходы (нагрузки) по жидкости для верхней  и нижней частей колонны определяют из соотношений:

LВ = GDRMВ /MD;                                                                                    (3.6)

LН = GDRMН /MP+GF MН/MF,                                                                 (3.7)

где МD и МF — мольные массы дистиллята и исходной смеси; МВ и МН — средние мольные массы жидкости в верхней и нижней частях колонны. Средние мольные массы жидкости в верхней и нижней частях колонны соответственно равны:

МВ = МД x ср. в + М Т (1 — x ср. в );

МН = МД x ср. н + М Т (1 — x ср. н );                                                            (3.8)

где МД и МТ — мольные массы диоксана и толуола; хср.в и хср.н— средний мольный состав жидкости соответственно в верхней и нижней частях колонны:

xcр. в=(xD+xF)/2 =(0,9 + 0,45)/2 = 0,675 кмоль/кмоль смеси;

xcр. н= (xF+xW)/2= (0,45 + 0,02)/2 = 0,235 кмоль/кмоль смеси.

Тогда:

МВ = 88 ∙ 0,675 + 92 (1 - 0,675) = 89,30 кг/кмоль;

МН = 88 ∙ 0,235 + 92 (1 - 0,235) = 91,06 кг/кмоль.

Мольная масса исходной смеси и дистиллята:

MF = 88 ∙ 0,45 + 92(1 — 0,45) = 90,2 кг/кмоль,

MD = 88 ∙ 0,9 + 92(1 — 0,9) = 88,4 кг/кмоль.

Подставим рассчитанные величины в уравнения (3.6) и (3.7), получим:

LВ = 0,278 ∙ 6,6 ∙ 89,3 / 88,4 = 1,853 кг / с;

LН = 0,278 ∙ 6,6 ∙ 91,06 / 88,4 + 0,58 ∙ 91,06 / 90,2 = 2,476 кг / с.

Средние массовые потоки пара в верхней GВ и нижней GH частях колонны соответственно равны:

GВ = GD(R+1)M’В / M D;              

GН = GD(R+1)M’Н / M D .                                                                  (3.9)

Здесь M’В и M’Н  - средние мольные массы паров в верхней и нижней частях колонны:

М’В = МД y ср. в + М Т (1 — y ср. в );

М’Н = МД y ср. н + М Т (1 — y ср. н );                                                            (3.10)

где

ycр. в=(yD+yF)/2 =(0,9 + 0,51)/2 = 0,705 кмоль/кмоль смеси;

ycр. н= (yF+yW)/2= (0,51 + 0,02)/2 = 0,265 кмоль/кмоль смеси.

Тогда

М’В = 88 ∙ 0,705 + 92(1 - 0,705) = 89,18 кг/кмоль;

М’Н = 88 ∙ 0,265 + 92(1 – 0,265) = 90,94 кг/кмоль.

Информация о работе Расчет ректификационной колонны