Автор: Пользователь скрыл имя, 24 Декабря 2010 в 17:13, курсовая работа
Окрашивание порошковыми лакокрасочными материалами представляет собой одну из наиболее совершенных технологий получения покрытий, отвечающих требованиям сегодняшнего дня. Возникновение этой технологии - результат длительного развития и эволюции методов, связанных с нанесением жидких лакокрасочных материалов и напылением металлов. Его становлению способствовали все возрастающие требования по охране окружающей среды, экономические соображения, стремление к повышению качества покрытий.
1 Художественное изделие с декоративным покрытием ………………………………..…4
1.1 Технологичность изделия ………………………………………………………………..4
1.2 Выбор материала…………………………………………………………………………...5
1.3 Технология изготовления………………………………….………………………………6
1.4 Программа выпуска………………………………………………………………………...7
2 Варианты декоративной отделки изделия…………………………………………………..8
2.1 Выбор декоративной отделки………………………………………………………….....8
2.2 Классификация порошковых лакокрасочных материалов……………………………....11
3 Технология нанесения покрытия……………………………………………………………15
3.1 Расчёты…………………………………………………………………………………..….15
3.2 Методы нанесения ПЛКП на металлические изделия………………...............................17
3.3 Последовательность операций нанесения ПЛКП на изделия………………………......22
4 Свойства декоративных покрытий……………………………………………………….…23
4.1Дефекты покрытий и методы устранения………………………………………................23
4.2 Контроль качества………………………………………………………………………….25
Список литературы……………………………………………………………………………28
Приложение…………………………………………………………………………………….29
Эпоксидные порошковые краски.
Ассортимент существующих промышленных красок весьма разнообразен. Краски различаются по цвету, условиям нанесения и отвердения, целевому использованию (грунтовочное покрытие, верхнее покрытие), назначению.
Эпоксидные порошковые краски обычно наносят на поверхность способом электростатического распыления. В зависимости от условий эксплуатации наносят 1-2 слоя. Эпоксидные покрытия отличаются высокой адгезией, механической прочностью и химической стойкостью. Интервал рабочих температур от -60 до +120?С. покрытия влагостойки, стойки к щелочам, алифатическим и ароматическим углеводородам, смазочным маслам, топливу, сырой нефти. По атмосферостойкости эпоксидные покрытия уступают многим другим покрытиям - они быстро теряют глянец и мелят. Диэлектрические свойства покрытий достаточно высоки.
Полиэфирные покрытия отличаются хорошими атмосферно - и светостойкостью, механической и электрической прочностью, повышенной стойкостью к истиранию. Полиэфирные краски лучше других порошковых материалов наносятся в электрическом поле, из них могут, получены покрытия различных цветов. Краски хорошо наносятся на поверхность электростатическим распылением, для них пригодны и другие способы нанесения. Они имеют высокий глянец и удовлетворительную адгезию к металлам.
Щелочестойкость покрытий низка. Диэлектрические показатели полиэфирных покрытий низка. Проводились атмосферные испытания покрытий в условиях юга, которые показали, что по атмосферостойкости полиэфирные покрытия превосходят все другие виды покрытий, в том числеполиакрилатные и полиуретановые.
Порошковые эпоксидно-полиэфирные краски привлекают большое внимание вследствие относительно низкой стоимости и хорошего качества получаемых покрытий. Краски получают комбинированием эпоксидного и полиэфирного олигомера. Краски наносят на поверхность способом электростатического распыления. Покрытия имеют красивый внешний вид, хороший глянец и равномерную окраску, устойчивы к воздействию воды, водных растворов солей, разбавленных щелочей и кислот.
3 Технология нанесения покрытия
3.1 Расчёты
Для декоративной окраски изделия применяется эпоксидный термореактивный порошковый лакокрасочный материал П-ЭП177.
Готовая к применению порошковая краска П-ЭП177 представляет собой гомогенизированную смесь эпоксидной смолы, отвердителя, пигментов и наполнителей.
Предназначается для получения электроизоляционных и антикоррозионных покрытий на металлических изделиях.
Покрытия на основе данной краски должны обеспечивать электрическую прочность при толщине пленки (350±25) мкм не менее 20 кВ/мм.
Краски порошковые эпоксидные выпускаются различных цветов и двух марок: марка «А» - для изделий с острыми кромками и марка «Б» - для изделий без острых кромок.
Наименование показателя | Норма |
Внешний вид краски | Тонкодисперсный порошок зеленого, серого и красного цвета. |
Внешний вид пленки | Однородная верхность без механических включений. Допускается шагрень. Не значительное количество оспин. |
Массовая доля летучих веществ, % не более | 1 |
Остаток на сите с сеткой N 0, , %, не более | 2 |
Растекаемость при температуре (180±2)°С, см | а) для марки
«А» 4, -7 3-7(ОН)
б) для марки «Б» 7, -10 7, -10(ОН) |
Эластичность пленки при изгибе, мм, не более для краски: | серой 10
красной, зеленой 30 50(ОН) |
Прочность пленки при ударе по прибору типа У-1, не менее для краски: | Серой 40 30(ОН)
зеленой 35 20(ОН) красной 20 15(ОН) |
Адгезия методом отслаивания, Н/м (гс/см), не менее, для краски: | серой, красной 600 зеленой 400 |
Время отверждения красок: | серой при температуре
(150±2)°С 3 ч, а затем при температуре
(180±2)°С 1 ч или при температуре
(180±2)°С 2 ч
зеленой и красной при температуре (180±2)°С 1 ч или при температуре (200±2)°С 30мин. |
Таблица 1 – основные показатели
Гарантийный срок хранения краски - 12 месяцев со дня изготовления.
Показатели пожаровзрывоопасности порошковых полимерных материалов (ГОСТ 9.410–88. Приложение 11)
• Нижний концентрационный предел воспламенения — 20 г/м3
• Температура воспламенения — 325°С
• Температура самовоспламенения — 415°С
• Группа горючести — горючие
Свойства:
6) Удельный вес - 1,3-1,7 гр/см3 в зависимости от цвета
7) Расход краски - приблизительно 10-12 м2/кг при толщине покрытия 60/50 мкм.
Механические свойства краски при толщине покрытия 50/60 мкм:
Сопротивление химическим воздействиям
3.2 Методы нанесения ПЛКМ на металлические изделия
Формирование покрытий связано с процессами сплавления частиц, растекания расплава и химического отверждения (в случае термореактивных красок). Требуемые условия формирования указаны в технологической документации, сопровождающей порошковые ЛКМ. Особенно важно соблюдение режима отверждения термореактивных красок, поскольку любое отклонение от него неблагопроиятно сказывается на свойствах получаемых покрытий. Недоотверждение (недогрев), в первую очередь, влияет на механические свойства (покрытия становятся хрупкими, разрушаются при ударе и изгибе), переотверждение (перегрев) – на цвет и блеск покрытия. Под температурой отверждения в документации значится температура на поверхности изделия, а не в печи.
При отверждении покрытия формируется структура его внутренних и поверхностных слоев. При этом характер поверхности определяется не только природой ЛКМ, но и условиями формирования покрытия. Например, причиной снижения глянца часто бывают летучие вещества присутствующие в краске. Чем выше температура отверждения, тем, как правило, больше выделяется летучих веществ и сильнее проявляется их влияние на блеск покрытий. Пористые материалы при нагревании выделяют воздух, а иногда и влагу, что вызывает поро- и кратерообразование в покрытиях.
3.2.1 Технология нанесения порошковых покрытий
Существуют различные технологии и методы нанесения порошковых покрытий. Электростатический и трибостатический методы являются наиболее популярными и распостраненными.
1)Технология порошковой окраски электростатическим напылением.
Рис. 1 - Технология зарядки коронным разрядом
Его популярность обусловлена следующими факторами: высокая эффективность зарядки почти всех порошковых красок, высокая производительность при порошковом окрашивании больших поверхностей, относительно низкая чувствительность к влажности окружающего воздуха, подходит для нанесения различных порошковых покрытий со специальными эффектами (металлики, шагрени, мауары и т.д.).
Наряду с достоинствами электростатическое напыление имеет ряд недостатков, которые обусловлены сильным электрическим полем между пистолетом распылителем и деталью, которое может затруднить нанесение порошкового покрытия в углах и в местах глубоких выемок. Кроме того, неправильный выбор электростатических параметров распылителя и расстояния от распылителя до детали может вызвать обратную ионизацию и ухудшить качество полимерного порошкового покрытия.
Оборудование для порошковой окраски - электростатический пистолет распылитель есть типовом комплексе порошковой окраски Альфа Колор.
Рис. 2 - Эффект клетки Фарадея
Эффект клетки Фарадея - результат воздействия электростатических и аэродинамических сил.
На рисунке показано, что при нанесении порошкового покрытия на участки, в которых действует эффект клетки Фарадея, электрическое поле, создаваемое распылителем, имеет максимальную напряженность по краям выемки. Силовые линии всегда идут к самой близкой заземленной точке и скорее концентрируется по краям выемки и выступающим участками, а не проникают дальше внутрь.
Это сильное поле ускоряет оседание частик, образуя в этих местах порошковое покрытие слишком большой толщины.
Эффект клетки Фарадея наблюдается в тех случаях, когда наносят порошковую краску на металлоизделия сложной конфигурации, куда внешнее электрическое поле не проникает, поэтому нанесение ровного покрытия на детали затруднено и в некоторых случаях даже невозможно.
Рис. 3 - Обратная ионизация
Обратная ионизация вызывается излишним током свободных ионов от зарядных электродов распылителя. Когда свободные ионы попадают на покрытую порошковой краской поверхность детали, они прибавляют свой заряд к заряду, накопившемуся в слое порошка. Но поверхности детали накапливается слишком большой заряд. В некоторых точках величина заряда превышается настолько, что в толще порошка проскакивают микро искры, образующие кратеры на поверхности, что приводит к ухудшению качества покрытия и нарушению его функциональных свойств. Также обратная ионизация способствует образованию апельсиновой корки, снижению эффективности работы распылителей и ограничению толщины получаемых покрытий.
Для уменьшения эффекта клетки Фарадея и обратной ионизации было разработано специальное оборудование, которое уменьшает количество ионов в ионизированном воздухе, когда заряженные частицы порошка притягиваются поверхностью. Свободные отрицательные ионы отводятся в сторону благодаря заземлению самого распылителя, что значительно снижает проявление вышеупомянутых негативных эффектов. Увеличив расстояние между распылителем и поверхностью детали, можно уменьшить ток пистолета распылителя и замедлить процесс обратной ионизации.
2)Технология порошковой окраски трибостатическим напылением.
Рис. 4 - Трибостатическое напыление - зарядка трением.
В отличие от электростатического напыления, в данной системе нет генератора высого напряжения для распылителя. Порошок заряжается в процессе трения.
Главная задача - увеличить число и силу столкновений между частицами порошка и заряжающими поверхностями пистолета распылителя.
Одним из лучших акцепторов в трибоэлектрическом ряду является политетрафторэтилен (тефлон), он обеспечивает хорошую зарядку большинства порошковых красок, имеет относительно высокую износоустойчивость и устойчив к налипанию частиц под действием ударов.