Автор: Пользователь скрыл имя, 16 Декабря 2012 в 17:09, курсовая работа
1) Механизировать и автоматизировать процесс сварки ёмкостей цилиндрической формы из нержавеющих сталей диаметром до 600 мм, весом до 100 кг и толщиной до 2 мм (кольцевые и круговые швы).
2) Произвести выбор механического и сварочного оборудования с подробным обоснованием выбранного вида сварки и технологии. Учитывая вес сварочного изделия оборудовать сварочный участок грузоподъемным механизмом.
1) Задачи
2) Введение
3) Механизация и автоматизации процесса сварки, выбор оборудования
4) Выбор режимов сварки
5) Вывод
6) Список литературы
В основном применялась сварка с отбортовкой кромок или стыковых швов. Во всех этих случаях сварка тонкого металла угольной дугой обеспечивала удовлетворительное формирование шва в любом пространственном положении, так как объем жидкой ванны мал. Изучение металлургических процессов позволило распространить сварку угольным электродом в углекислом газе на нержавеющие стали и комбинированные соединения (низкоуглеродистая сталь + высоколегированный сплав).
Применение плавящихся электродов
для сварки в углекислом газе сдерживалось
тем, что наличие окислительной
атмосферы приводило к
Таким образом, для предотвращения указанных выше недостатков необходимо было подавить окислительный потенциал газовой фазы. Это было достигнуто путем применения проволоки, легированной марганцем и кремнием, которые являются хорошими раскислителями. Введение дополнительного количества раскислителей в зону дуги подавляет окисление углерода и выгорание других элементов из металла, что устраняет образование пор и обеспечивает получение швов с достаточно высокими механическими свойствами.
Сотрудниками ЦНИИТМАШ в середине 50-х гг. ХХ в. были разработаны технологические рекомендации по сварке в углекислом газе проволоками диаметром 1,6–2,5 мм углеродистых, нержавеющих и ряда конструкционных сталей. Новый способ сварки обеспечивал более высокую производительность по сравнению с ручной дуговой сваркой, но мог быть использован только для выполнения швов в нижнем положении металла средних и больших толщин.
В это же время в Институте
электросварки при
Для реализации этих способов
разработана специальная
В то же время при использовании серийной проволоки Св-08Г2С процесс сварки сопровождался разбрызгиванием до 15%. Исследованиями российских ученых установлено, что потери на разбрызгивание существенно зависят от соотношения между напряжением и током сварки, чистоты поверхности проволоки, магнитного дутья, динамических свойств источника питания, техники выполнения сварки и квалификации сварщика.
Одним из путей уменьшения разбрызгивания при сварке в углекислом газе является введение в дугу ряда веществ: солей щелочных и щелочноземельных металлов, оксидов титана, легирующих элементов. Наиболее широкое распространение получил способ введения различных веществ в дугу при сварке в углекислом газе за счет использования порошковой проволоки. Основу шихты порошковых проволок, используемых для сварки в СО2, составляют шлакообразующие, раскислители и легирующие. Наиболее широкое применение нашли рутиловые и рутил-флюоритные порошковые проволоки.
Сварка в защитных газах
Классификация способов сварки в защитных газах представлена на рис.1.
Рисунок 1. Классификация способов сварки в защитных газах
Конструкционную сталь, применяемую в сварных изделиях, выплавляют в основных и кислых мартеновских и открытых электропечах. Нередко осуществляют рафинирование стали (особенно легированных высокопрочных сталей) жидким синтетическим шлаком (СШ) в ковше, а также электрошлаковым переплавом (ЭШП). В некоторых случаях производят вакуумно-дуговой переплав (ВДП) и выплавку в индукционных печах (ВИ). Рафинирование снижает загрязненность стали неметаллическими включениями (оксидами, сульфидами, и т.д.), вредными примесями (серой) и газами, уменьшает число дефектов (волосовины и пористость), что улучшает свариваемость сталей. Однако при этом повышается склонность сталей к росту зерна при нагреве. Поэтому иногда ударная вязкость сварных соединений в зоне термического влияния оказывается ниже, чем у сталей обычной выплавки.
К среднеуглеродистым относят стали, содержащие 0,20—0,45%С. Средне-углеродистые стали отличаются от низкоуглеродистых различным содержанием углерода. Качественные углеродистые стали могут быть с повышенным содержанием марганца (0,7—1,0%). Среднеуглеродистые стали используют в нормализованном состоянии. Для сварно-литых и сварно-кованых конструкций применяют преимущественно стали 35 и 40. К высокоуглеродистым относятся стали, содержащие 0,46—0,75%С. Они отличаются плохой свариваемостью и их не применяют для изготовления сварных конструкций. Необходимость сварки подобных сталей возникает при ремонтных работах.
Основным легирующим элементом, определяющим
механические свойства углеродистых сталей,
является углерод. С повышением углерода
увеличивается прочность и
Для современных легированных сталей
характерно многокомпонентное комплексное
легирование. Оно более экономично
и позволяет получить стали с
более высокими механическими свойствами.
Механические свойства после упрочняющей
термической обработки (закалки, отпуска)
некоторых конструкционных
Для конструкционных средне- и высокоуглеродистых и легированных сталей характерной особенностью является образование закалочных структур в шве и зоне термического влияния, создающих опасность хрупкого разрушения. Поэтому для получения надежных сварных соединений при изготовлении изделий из сталей этой группы необходимо выбирать марку стали не только исходя из показателей прочности основного металла, но и с учетом возможности получения необходимых стабильных механических свойств сварных соединений в условиях производства данного конкретного изделия и полной реализации этих свойств при работе конструкций.
В некоторых случаях разрушения происходят вследствие концентрации напряжений, появления значительных по величине остаточных сварочных напряжений и снижения пластичности металла. Эти факторы проявляются сильнее в результате конструктивных недостатков, неправильного выбора материалов для сварных изделий, способов сварки и технологии. Надежность и долговечность сварных соединений должны являться основными и главными критериями при выборе марки стали и способов изготовления сварных изделий. В ряде случаев оказывается более целесообразным выбор менее прочной стали, с меньшим содержанием углерода, но более технологичной при сварке. Содержание углерода более 0,30% способствует склонности сталей к перегреву и закалке, образованию горячих и холодных трещин в сварном соединений и пор в металле шва. Для предупреждения этих явлений необходимы усложняющие технологический процесс операции подогрева при сварке и термообработки после сварки.
При изготовлении ответственных сварных изделий из закаливающихся сталей в технологическом процессе должны быть предусмотрены меры, предупреждающие опасность хрупких разрушений:
1) Применение основного металла с регламентированным составом и свойствами, в частности спокойной и дополнительно раскисленной стали, низколегированных сталей вакуумно-дугового и электрошлакового переплава и др.
2) Применение методов сварки, обеспечивающих высокие механические свойства металла шва (дуговая сварки покрытыми электродами, под флюсом, в защитных газах и др.).
3) Применение методов контроля,
ограничивающих наличие в
4) Правильное конструктивное
5) Повышение требований к
6) Применение термической
7) Индустриализация методов
Свариваемость конструкционных углеродистых и легированных сталей можно определить как способность стали переносить тепловой режим при том или ином сварочном процессе без образования в соединении участков металла с пониженными пластическими свойствами, способствующими возникновению трещин при сварке конструкций или разрушению сварных соединений в эксплуатации. Рассматриваемая группа материалов относится к закаливающимся сталям, в сварных соединениях которых под действием термического цикла сварки могут образовываться хрупкие и малопластичные зоны в участках, где металл нагревается до температур выше точки Ас3. Распад аустенита при охлаждении в условиях сварочного термического цикла начинается при более низких температурах и в некоторых случаях полностью не заканчивается даже при остывании до 20 °С; при этом в структуре металла наряду с мартенситом остается нестабильный остаточный аустенит (в зависимости от уровня легирования). Стали, склонные к резкой закалке, имеющие в результате термического цикла сварки структуру мартенсита и остаточного аустенита при повышенной концентрации водорода, при воздействии внутренних напряжений чувствительны к образованию холодных трещин. Наиболее часто холодные трещины образуются в швах и околошовной зоне среднеуглеродистых и легированных сталей перлитного и мартенситного классов, свариваемых проволокой, состав которой близок к составу основного металла. Холодные (закалочные) трещины возникают как в интервале температур образования мартенсита (250 °С и ниже), так и после полного остывания сварного изделия, спустя некоторое, иногда значительное время после сварки (через 24—48ч). Чем выше температура распада аустенита, грубее структура мартенсита, выше уровень внутренних сварочных и структурных напряжений, тем вероятнее образование холодных закалочных трещин. С увеличением толщины свариваемого металла возможность образования закалочных трещин возрастает.
Элементы, снижающие температуру мартенситного превращения, усиливают склонность металла к образованию холодных закалочных трещин. К таким элементам прежде всего относится углерод. В среднелегированных сталях температура мартенситного превращения снижается при повышении содержания марганца, никеля, хрома, молибдена и др. О свариваемости применительно к ее чувствительности к закаливаемости ориентировочно судят по коэффициенту эквивалента углерода для различных легирующих элементов:
Сэкв=[С+Мn/6+(Cr+Mo+V)/5+(Ni+
где символы – химический элемент, содержание его в стали, % масс.
Стали с эквивалентом по углероду более 0,45 склонны к образованию трещин при сварке. Однако этот критерий не является основанием для неприменения стали в сварной конструкции. При одном и том же показателе Сэквстали с большим содержанием углерода имеют более высокую чувствительность к холодным трещинам, чем сложнолегированные стали с меньшим содержанием углерода. Образование холодных трещин спустя некоторое время после полного остывания сварного соединения. Замедленное разрушение связано с фиксированием нестабильного остаточного аустенита в структуре мартенсита при быстром остывании участков сварных соединений, нагревающихся при сварке выше точки Ас3. Остаточный аустенит с течением времени распадается при 20 °С. Интенсивность этого процесса усиливается при охлаждении ниже 0 °С. При сварочном цикле создаются благоприятные условия для образования остаточного аустенита вследствие повышенной гомогенизации твердого γ-раствора при нагреве до высоких температур и высокой скорости охлаждения. Кроме того, объемные напряжения сжатия, возникающие в шве и прилегающей зоне основного металла при образовании мартенсита, затормаживают процесс мартенситного превращения и могут способствовать сохранению еще большего количества остаточного аустенита. При распаде остаточного аустенита с увеличением объема образуется хрупкая структура неотпущенного мартенсита, что вызывает дополнительные структурные напряжения, кроме сварочных, в области хрупких структур шва и околошовной зоны. Вследствие увеличения микрообъемов металла при распаде остаточного аустенита происходит зарождение и развитие трещин в ранее образовавшемся мартенсите. Чем грубее структура первичного мартенсита, тем она более хрупка, и образование трещин более вероятно.
Когда сварной шов выполняют
в условиях жесткого закрепления
свариваемых деталей, в шве после
остывания развиваются высокие
растягивающие напряжения от реакции
заделки. Суммарное воздействие
растягивающих сварочных
Информация о работе Механизации и автоматизации сварочных процессов