Автор: Пользователь скрыл имя, 15 Августа 2012 в 20:15, контрольная работа
Получение сахара из сахарного тростника было известно с давних времен. В промышленных масштабах производство сахара началось в XVI веке в Индии.
В России сахарная промышленность начала развиваться с начала XVIII века. Первый сахаро-рафинадный завод, использовавший привозной тростниковый сахар-сырец, был пущен в Петербурге в 1719 году.
4. Описание схемы автоматизации.
Роспускное отделение.
Роспускное отделение предназначено для получения сиропа с содержанием сухих веществ 65-67% при температуре 82-850С и равномерной его подаче в последующие отделения а обработку. Согласно системе управления роспускного отделения сахарный песок из бункера II ленточным транспортером I подается в клеровочные котлы III , которые представляют собой цилиндрические вертикальные емкости диаметром 2,5 м с лопастной мешалкой и открытым паровым обогревом. Для получения сиропа в котлы подают горячую воду, промой роспускного отделения, побочные продукты отделений фильтрования и вакуум-выпарногоотделения.
Схема управления обеспечивает регулирование расхода сахара- песка, подаваемого в отделение, температуры в клеровочных котлах, плотности сиропа, уровня в клеровочных котлах, контроль расходов проемов, подаваемых на роспуск сахара-песка, сигнализацию предельных значений уровня в бункере сахара- песка.
Система управления роспускным отделением может быть реализована с помощью АСУТП ( супервизорным режим по модулю В)
АСУТП роспускного отделения
Объект управления включает: транспортер 1, бункер сахарного песка 2, клеровочные котлы 3, сборник промоев 4, сборник сиропа 5.
Основные компоненты системы: контролеры Р-130 с интеллектуальным шлюзом со 100% -м резервированием; АРМы оператора- технолога, начальника отделения и лаборатории на базе ЭВМ (Pentium I промышленного исполнения) и 20 мониторов с повышенной защитой от электромагнитных воздействий; сетевые средства- 10Мбит со 100% резервированием; станцию архивирования в комплекте со сменными магнитными дисководами (640Мбайт); сервер БД; принтеры; пакеты программ « КРУГ-2000»; конструктивы-19 шкаф (RITTFL).
Информационная мощность АСУТП: общее число входных и выходных сигналов 11/11, т.е. 22. Из них контролируемых аналоговых ( расход, плотность, уровень и температура)-9; контролируемых дискретных ( с учетом запорной арматуры)-9; дискретных управляющих – 1;контуров регулирования- 3; запорной арматуры-3; противоаварийной защит и блокировок (100% резервирование)-13, из них аналоговых параметров – 9, входной диск -1, выходных дискретных – 3. Система управления реализована с « горячим» резервированием в трех комплектах.
Динамика работы АСУТП.
Максимальный период опроса датчиков на контроллере: дискретный вход- 100мкс, аналоговый вход- 1 мс; максимальное время реакции на аварийные сигналы: при обработке в цепях аварийной защиты на уровне контроллера-20-80мс, при передаче на пульты оператора – 200 мс; цикл смены данных на пульте операторов при 200 динамических элементов в кадре- 0,15-1,0 с ; цикл смены кадров- 0,2-1,5 с ; минимальное время реакции на команду оператора-0,2 с; время полного перезапуска системы после отключения питания-30 с, конроллеров после отключения питания-20с.
Время наработки на отказ контроллеров Р-130 составляет32-1024 входов/выходов. Использовано: аналоговых входов/выходов-9/9; дискретных входов/выходов-2/2.
Расход сахара-песка в
Стабилизация температуры в клеровочных котлах осуществляется изменением подачи пара в барботеры котлов. В качестве регулирующих устройств применяют логико – программный контроллер Р-130( 2-1) и (6-1).
Стабилизация плотности сиропа обеспечивается изменением подачи сиропа в клеровочные котлы промоев. В САР входят изотопный плотномер (3-1) и АЦП ( ADAM-4012), телемонитор и АЦПУ (3-2), регулирующий контроллер Р-130 (3-3) с выходом посредством ЦАП (ADAM-4031) и панели (3-4) на регулирующий клапан (3-5), установленный на трубопроводе подачи промоев к клеровочным котлам.
Уровень в клеровочных котлах регулируют изменением откачки сиропа на дальнейшую обработку. Уровень изменяется пьезометрическим методом. Сигнал от датчика ( 5-1) поступает на нормирующий преобразователь и АЦП
(ADAM-4012) (5-2) и далее – на ПТК, где отображается на телемониторе, регулируется на АЦПУ (5-3) и поступает на логико – программный контроллер Р-130. Управляющий сигнал поступает на ЦАП (ADAM-4012) и подается на регулирующий клапан (5-5) , установленный на трубопроводе откачки сиропа клеровки. В первом клеровочном котле, снабженном переливочным устройством, предусмотрен контроль уровня пьезометрическим методом с помощью датчика ( 4-1), нормирующего преобразователя и АЦП (ADAM-4012) (4-2) с выходом на телемонитор ( 4-3) или АЦПУ панели ПТК. Сигнализация предельных уровней в бункере II осуществляется с помощью емкостного уровнемера, датчиков ( 8-1) и (8-2), АЦП (ADAM-4012) с выходом на сигнализацию на пульт ПТК и АРМ технолога.
Расход промоев регулируется индукционным расходомером (7-1) с выходом на нормирующий преобразователь( 7-2), АЦП (ADAM-4012) и далее на телемонитор и АЦПУ( 7-3) пульта ПТК и АРМ технолога. Температурные режимы в клеровочных котлах измеряются комплектом терморезисторных датчиков ТСМ и АЦП (ADAM-4012) или с помощью модулей ADAM-4013 (9-1) и (9-2) с выходом на пульт ПТК и АРМ технолога для отображения на мониторе и регистрации на АЦПУ(9-3).
Отделение очистки сиропа.
Приготовление в клеровочном котлах сироп содержит сравнительно много примесей, которые необходимо отделить, не допуская их попадания в технологический поток.
В технологической схеме
Система управления очистки сиропа реализуют с помощью АСУТП, действующей в супервизорном режиме по модулю В .
АСУТП отделения очистки сиропа представляют собой РСУ малого масштаба, включающую подсистемы сбора и отражения информации, автоматического регулирования, дискретно- логического управления, противоаварийных защит и блокировок.
Объект управления включает: Сборник сиропа 1, гравиевые фильтры 2, сборник сиропа4, патронный фильтр 5, сборник сиропа 6.
Основные компоненты системы: контроллеры ТК -301 со 100%-м резервированием; АРМы оператора – технолога, начальника отделения и лаборатории на базе ЭВМ (Pentium I промышленного исполнения) и 20 монитором с повышенной защитой от электромагнитных воздействий; сетевые средства- 10 Мбит, Ethernet-технологии со скидкой со 100% -м резервированием; станцию архивирования в комплекте со сменными магнитооптическими дисководами (640 Мбайт); сервер БД, принтеры: пакеты программ « КРУГ-2000»; конструктивы- 19 шкаф ( RITTAL).
Информационная мощность АСУПТ : общее число входных и выходных сигналов – 13/13, т.е. 26. Из них контролируемых аналоговых ( расход и уровень) – 8 ; контролируемых дискретных( с учетом запорной арматуры) -8; дискретных управляющих -3; контуров регулирования -5; запорной арматуры- 5;противоаварийных защит и блокировок ( 100% -е резервирование) -18, из них: аналоговых параметров – 8, входных дискретных – 3, выходных дискретных – 7. Система управления реализована с «горячим» резервированием в трех комплексах.
Динамика работы АСУТП.
Максимальный период опроса датчиков наконтроллере: дискретный вход- 100мкс, аналоговый вход- 1 мс; максимальное время реакции на аварийные сигналы: при обработке в цепях аварийной защиты на уровне контроллера-20-80мс, при передаче на пульты оператора – 200 мс; цикл смены данных на пульте операторов при 200 динамических элементов в кадре- 0,15-1,0 с ; цикл смены кадров- 0,2-1,5 с ; минимальное время реакции на команду оператора-0,2 с; время полного перезапуска системы после отключения питания-30 с, конроллеров после отключения питания-20с.
Время наработки на отказ контроллера-50 000ч (в дублированном исполнении-100 000 ч).
Время наработки на отказ контроллеров ТК-301составляет - 20- 20000 входов/выходов. Использовано: аналоговых входов/выходов-8/8; дискретных входов /выходов – 3/7.
Система управления отделением очистки сиропа обеспечивает : контроль расхода сиропа, подаваемого на станцию очистки; стабилизацию уровня во всех емкостях технологического потока; регулирование расхода сиропа на патронных фильтрах.
Контроль расхода сиропа, подаваемого в отделение фильтрования, осуществляется индукционным расходомером ( 1-1) с выходом на нормирующий преобразователь ( 1-2) и АЦП ( ADAM-4012), сигнал которого поступает на ПТК и АРМ технолога для отображения на телемониторе и регистрации на АЦПУ (1-3). Контроль уровня во всех емкостях отделения осуществляется пьезометрическим методом. Комплекс средств управления аналогичен описанному и входящему в САР уровня в клеровочных котлах ( поз.5) ( см рис. 3). Управляющее воздействие с контроллера ТК-301 уровня в сборнике сиропа перед гравиевыми фильтрами ( 2-4) используется в качестве корректирующего сигнала для системы регулирования подачи сахара-песка в роспускном отделение.
Управляющее воздействие с контроллера ТК-301 уровня в сборнике перед патронным фильтром (3-4) поступает на ЦАП ( ADAM-4012) и клапаны, установленные на трубопроводе подачи сиропа на гравиевый фильтр II (один клапан – перед фильтром и один – после него). Уровни в сборниках после фильтров регулируются техническими средствами (4 и 5). Воздействия с контроллеров подаются на клапаны, установленные на трубопроводах откачки сиропа.
Расход сиропа, подаваемого на патронный фильтр V, регулируется изменением положения заслонки на трубопроводе подачи сиропа. Метод и средства контроля расхода аналогичны комплекту (1), в САР использован пульт управления ПТК и АРМ технолога ( 6-3). Сигнал задания контроллеру формируется задатчиком алгебраического суммирования ( 6-6) и клавиатурой, на которое в качестве корректирующего воздействия подается сигнал из САР уровня в сборнике VI перед ионитными реактивами.
При нормальном значении уровня в
сборнике выходной сигнал алгебраического
суммирования (6-6) не изменяется, а при
повышении уровня изменяется на величину
коррекции. Откорректированное задание
поступает на контроллер с пульта
управления ПТК и АРМ технолога
(6-3). Такое построение контура регулирования
позволяет реализовать его
АСУТП предназначена
для автоматического сбора
В настоящее время
АСУТП широко применяются в промышленности,
особенно там, где выполняются
сложные технологические
Автоматизированные системы управления технологическими процессами отличаются от систем автоматического управления (регулирования) более широким диапазоном автоматизируемых функций управления. АСУТП выполняют следующие основные функции: централизованного контроля, определяют оптимальный технологический режим, удовлетворяющий выбранному критерию; формируют и реализуют управляющие воздействия, обеспечивающие ведение оптимального режима; корректируют математическую модель объектапри изменениях на объекте; рассчитывают и регистрируют текущие и обобщенные технологические и экономические показатели; оперативно распре-
деляют материальные
потоки и энергию между