Передеча данных между удаленными ЭВМ.Средства коммуникации и мировые компьютерные сети

Автор: Пользователь скрыл имя, 14 Марта 2012 в 18:39, реферат

Краткое описание

Современные информационные системы продолжают возникшую в конце 70-х гг. тенденцию распределенной обработки данных. Начальным этапом развития таких систем явились многомашинные ассоциации – совокупность вычислительных машин различной производительности, объединенных в систему с помощью каналов связи. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней – от локальных до глобальных.

Оглавление

Введение
КОММУНИКАЦИОННАЯ СРЕДА И ПЕРЕДАЧА ДАННЫХ
Назначение и классификация компьютерных сетей
Передача информации
Обобщенная структура компьютерной сети
Классификация вычислительных сетей
Характеристика процесса передачи данных
Режимы передачи данных
Коды передачи данных
Аппаратная реализация передачи данных
Аппаратные средства
Характеристики коммуникационной сети
Звенья данных
Понятие звена данных
Управление звеньями данных
Основные формы взаимодействия абонентских ЭВМ
АРХИТЕКТУРА КОМПЬЮТЕРНЫХ СЕТЕЙ
Эталонные модели взаимодействия систем
Модель взаимодействия открытых систем
Модель взаимодействия для ЛВС
Протоколы компьютерной сети
Понятие протокола
Основные типы протоколов
Локальные вычислительные сети
Особенности организации ЛВС
Функциональные группы устройств в сети
Управление взаимодействием устройств в сети
Типовые топологии и методы доступа ЛВС
Физическая передающая среда ЛВС
Основные топологии ЛВС
Глобальная сеть
Представление о структуре и системе адресации
Структура Internet
Система адресации в Internet
Способы организации передачи информации
Электронная почта
World-Wide-Web (Всемирная информационная сеть)
Телеконференции Usenet
Взаимодействие с другим компьютером (Telnet)
Литература

Файлы: 1 файл

Оспанова Маржан 107 'Б'.doc

— 744.50 Кб (Скачать)

Взаимодействие между рабочими станциями в сети, как правило, осуществляется через сервер. Логическая организация такой сети может быть представлена топологией звезда. Роль центрального устройства выполняет сервер. В сетях с централизованным управлением существует возможность обмена информацией между рабочими станциями, минуя файл-сервер. Для этого можно использовать программу NetLink. После запуска программы на двух рабочих станциях можно передавать файлы с диска одной станции на диск другой (аналогично операции копирования файлов из одного каталога в другой с помощью программы Norton Commander).

Достоинства сети с выделенным сервером:

      надежная система защиты информации;

      высокое быстродействие;

      отсутствие ограничений на число рабочих станций;

      простота управления по сравнению с одноранговыми сетями.

Недостатки сети:

      высокая стоимость из-за выделения одного компьютера под сервер;

      зависимость быстродействия и надежности сети от сервера;

      меньшая гибкость по сравнению с одноранговой сетью.

Сети с выделенным сервером являются наиболее распространенными у пользователей компьютерных сетей. Сетевые операционные системы для таких сетей — LANServer (IBM), Windows NT Server версий 3.51 и 4,0 и NetWare (Novell).

Типовые топологии и методы доступа ЛВС

Физическая передающая среда ЛВС

Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Как уже упоминалось, физическая передающая среда ЛВС представлена тремя типами кабелей; витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

Витая пара состоит из двух изолированных проводов, свитых между собой (рис.). Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары — телефонный кабель. Витые пары имеют различные характеристики, определяемые размерами, изоляцией и шагом скручивания. Дешевизна этого вида передающей среды делает ее достаточно популярной для ЛВС.

Рис. Витая пара проводов

 

Основной недостаток витой пары — плохая помехозащищенность и низкая скорость передачи информации - 0,25 - 1 Мбит/с. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Коаксиальный кабель по сравнению с витой парой обладает более высокой механической прочностью, помехозащищенностью и обеспечивает скорость передачи информации до 10-50 Мбит/с. Для промышленного использования выпускаются два типа коаксиальных кабелей: толстый и тонкий. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле. Коаксиальный кабель так же, как и витая пара, является одним из популярных типов передающей среды для ЛВС.

Оптоволоконный кабель — идеальная передающая среда, Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации.

Скорость передачи информации по оптоволоконному кабелю более 50 Мбит/с. По сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.

ЛВС, выпускаемые различными фирмами, либо рассчитаны на один из типов передающей среды, либо могут быть реализованы в различных вариантах, на базе различных передающих сред.

Основные топологии ЛВС

Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым случайным образом на территории, где создается вычислительная сеть. Следует заметить, что для способа обращения к передающей среде и методов управления сетью небезразлично, как расположены абонентские ЭВМ, Поэтому имеет смысл говорить о топологии ЛВС.

Топология ЛВС — это усредненная геометрическая схема соединений узлов сети.

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три: кольцевая, шинная, звездообразная.

Иногда для упрощения используют термины — кольцо, шина и звезда. Не следует думать, что рассматриваемые типы топологий представляют собой идеальное кольцо, идеальную прямую или звезду.

Любую компьютерную сеть можно рассматривать как совокупность узлов.

Узел — любое устройство, непосредственно подключенное к передающей среде сети.

Топология усредняет схему соединений узлов сети. Так, и эллипс, и замкнутая кривая, и замкнутая ломаная линия относятся к кольцевой топологии, а незамкнутая ломаная линия — к шинной.

Кольцевая топология предусматривает соединение узлов сети замкнутой кривой — кабелем передающей среды (рис.). Выход одного узла сети соединяется с входом другого. Информация по кольцу передается от узла к узлу. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимающий узел распознает и получает только адресованные ему сообщения.

 

Кольцевая топология является идеальной для сетей, занимающих сравнительно и большое пространство. В ней отсутствует центральный узел, что повышает надежное сети. Ретрансляция информации позволяет использовать в качестве передающей сред любые типы кабелей.

 

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (Hub - концентратор ), которые иногда называют “хаб”. В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвитвленным устройством (максимум на три рабочие станции).

Последовательная дисциплина обслуживания узлов такой сети снижает ее быстродействие, а выход из строя одного из узлов нарушает целостность кольца и требует принять специальных мер для сохранения тракта передачи информации.

 

Шинная топология — одна из наиболее простых (рис.). Она связана с использованием в качестве передающей среды коаксиального кабеля. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не транслирую поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Дисциплина обслуживания параллельная.

Это обеспечивает высокое быстродействие ЛВС с шинной топологией. Сеть легко наращивать и конфигурировать, а также адаптировать к различным системам. Сеть шинной топологии устойчива к возможным неисправностям отдельных узлов.

Сети шинной топологии наиболее распространены в настоящее время. Следует отметить, что они имеют малую протяженность и не позволяют использовать различные типы кабеля в пределах одной сети.

Звездообразная топология (рис.) базируется на концепции центрального узла, к которому подключаются периферийные узлы. Каждый периферийный узел имеет свою отдельную линию связи с центральным узлом. Воя информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.

 

Звездообразная топология значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры. В то же время работоспособность ЛВС со звездообразной топологией целиком зависит от центрального узла.

В реальных вычислительных сетях могут использоваться более сложные топологии, представляющие в некоторых случаях сочетания рассмотренных.

Выбор той или иной топологии определяется областью применения ЛВС, географическим расположением ее узлов и размерностью сети в целом.

Глобальная сеть

      Представление о структуре и системе адресации

      Способы организации передачи информации

Представление о структуре и системе адресации

Структура Internet

Internet представляет собой глобальную компьютерную сеть. Само ее название означает "между сетей". Это сеть, соединяющая отдельные сети.

Логическая структура Internet представляет собой некое виртуальное объединение имеющее свое собственное информационное пространство.

Internet обеспечивает обмен информацией между всеми компьютерами, которые входят в сети, подключенные к ней. Тип компьютера и используемая им операционная систем значения не имеют. Соединение сетей обладает громадными возможностями. С собственного компьютера любой абонент Internet может передавать сообщения в другой город, просматривать каталог библиотеки Конгресса в Вашингтоне, знакомиться с картинами на последней выставке в музее Метрополитен в Нью-Йорке, участвовать в конференции IEEE и даже в играх с абонентами сети из разных стран. Internet предоставляет в распоряжение своих пользователей множество всевозможных ресурсов.

Основные ячейки Internet — локальные вычислительные сети. Это значит, что Internet не просто устанавливает связь между отдельными компьютерами, а создает пути соединения для более крупных единиц — групп компьютеров. Если некоторая локальная сеть непосредственно подключена к Internet, то каждая рабочая станция этой сети также может подключаться к Internet. Существуют также компьютеры, самостоятельно подключенные к Internet. Они называются хост-компьютерами (host — хозяин). Каждый подключенный к сети компьютер имеет свой адрес, по которому его может найти абонент из любой точки света.

Важной особенностью Internet является то, что она, объединяя различные сети, не создает при этом никакой иерархии — все компьютеры, подключенные к сети, равноправны. Для иллюстра­ции возможной структуры некоторого участка сети Internet приведена схема соединения различных сетей (рис.).

Подключение различных сетей
к Internet

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Система адресации в Internet

Internet самостоятельно осуществляет передачу данных. К адресам станций предъявляются специальные требования. Адрес должен иметь формат, позволяющий вести его обработку автоматически, и должен нести некоторую информацию о своем владельце.

С этой целью для каждого компьютера устанавливаются два адреса: цифровой IP-адрес (IP — Internetwork Protocol — межсетевой протокол) и доменный адрес.

Оба эти адреса могут применяться равноценно. Цифровой адрес удобен для обработки на компьютере, а доменный адрес — для восприятия пользователем.

Цифровой адрес имеет длину 32 бита. Для удобства он разделяется на четыре блока по 8 бит, которые можно записать в десятичном виде. Адрес содержит полную информацию, необходимую для идентификации компьютера.

Два блока определяют адрес сети, а два другие — адрес компьютера внутри этой сети Существует определенное правило для установления границы между этими адресами. Поэтому IP-адрес включает в себя три компонента: адрес сети, адрес подсети, адрес компьютера в подсети.

Пример 6. В двоичном коде цифровой адрес записывается следующим образом:

10000000001011010000100110001000. В десятичном коде он имеет вид: 192.45.9.200. Адрес сети — 192.45; адрес подсети — 9, адрес компьютера — 200.

Доменный адрес определяет область, представляющую ряд хост-компьютеров, В отличие от цифрового адреса он читается в обратном порядке. Вначале идет имя компьютера, затем имя сети, в которой он находится.

Примечание. Чтобы абонентам Internet можно было достаточно просто связаться друг с другом, все пространство ее адресов разделяется на области домены. Возможно также разделение по определенным признакам и внутри доменов.

В системе адресов Internet приняты домены, представленные географическими регио­нами. Они имеют имя, состоящее из двух букв.

Пример 7. Географические домены некоторых стран: Франция — fr; Канада—са США — us; Россия — ru.

Существуют и домены, разделенные по тематическим признакам. Такие домены имеют трехбуквенное сокращенное название.

Пример 8. Учебные заведения—edu.

Правительственные учреждения — gov.

Коммерческие организации — com.

Компьютерное имя включает, как минимум, два уровня доменов. Каждый уровень от­деляется от другого точкой. Слева от домена верхнего уровня располагаются другие имена, Все имена, находящиеся слева, — поддомены для общего домена.

Пример 9. Существует имя lutor.sptu.edu. Здесь edu — общий домен для школ и университетов. Tutor — поддомен splu, который является поддоменом edu.

Для пользователей Internet адресами могут быть просто их регистрационные имена на компьютере, подключенном к сети. За именем следует знак @. Все это слева присоединяется к имени компьютера.

Пример 10. Пользователь, зарегистрировавшийся под именем victor на компьютере, имеющем в Internet имя tutor.sptu.edu, будет иметь адрес:

victor@tutoT.sptu. edu.

В Internet могут использоваться не только имена отдельных людей, но и имена групп. Для обработки пути поиска в доменах имеются специальные серверы имен. Они преобразо­вывают доменное имя в соответствующий цифровой адрес.

Локальный сервер передает запрос на глобальный сервер, имеющий связь с другими локальными серверами имен. Поэтому пользователю просто нет никакой необходимости знать цифровые адреса.

Информация о работе Передеча данных между удаленными ЭВМ.Средства коммуникации и мировые компьютерные сети