Передеча данных между удаленными ЭВМ.Средства коммуникации и мировые компьютерные сети

Автор: Пользователь скрыл имя, 14 Марта 2012 в 18:39, реферат

Краткое описание

Современные информационные системы продолжают возникшую в конце 70-х гг. тенденцию распределенной обработки данных. Начальным этапом развития таких систем явились многомашинные ассоциации – совокупность вычислительных машин различной производительности, объединенных в систему с помощью каналов связи. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней – от локальных до глобальных.

Оглавление

Введение
КОММУНИКАЦИОННАЯ СРЕДА И ПЕРЕДАЧА ДАННЫХ
Назначение и классификация компьютерных сетей
Передача информации
Обобщенная структура компьютерной сети
Классификация вычислительных сетей
Характеристика процесса передачи данных
Режимы передачи данных
Коды передачи данных
Аппаратная реализация передачи данных
Аппаратные средства
Характеристики коммуникационной сети
Звенья данных
Понятие звена данных
Управление звеньями данных
Основные формы взаимодействия абонентских ЭВМ
АРХИТЕКТУРА КОМПЬЮТЕРНЫХ СЕТЕЙ
Эталонные модели взаимодействия систем
Модель взаимодействия открытых систем
Модель взаимодействия для ЛВС
Протоколы компьютерной сети
Понятие протокола
Основные типы протоколов
Локальные вычислительные сети
Особенности организации ЛВС
Функциональные группы устройств в сети
Управление взаимодействием устройств в сети
Типовые топологии и методы доступа ЛВС
Физическая передающая среда ЛВС
Основные топологии ЛВС
Глобальная сеть
Представление о структуре и системе адресации
Структура Internet
Система адресации в Internet
Способы организации передачи информации
Электронная почта
World-Wide-Web (Всемирная информационная сеть)
Телеконференции Usenet
Взаимодействие с другим компьютером (Telnet)
Литература

Файлы: 1 файл

Оспанова Маржан 107 'Б'.doc

— 744.50 Кб (Скачать)

Физический уровень заголовка не добавляет. Сообщение, обрамленное заголовками и концевиком, уходит в коммуникационную сеть и поступает на абонентские ЭВМ вычислительной сети. Каждая абонентская ЭВМ, принявшая сообщение, дешифрирует адреса и определяет, предназначено ли ей данное сообщение.

При этом в абонентской ЭВМ происходит обратный процесс — чтение и отсечение заголовков уровнями модели взаимодействия открытых систем. Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринима­ются и не изменяются — они "прозрачны " для нижних уровней. Так, перемещаясь по уровням модели ВОС, информация, наконец, поступает к процессу, которому она была адресована.

Внимание! Каждый уровень модели взаимодействия открытых систем реагирует только на свой заголовок.

В чем же основное достоинство семиуровневой модели ВОС? В процессе развития и совершенствования любой системы возникает потребность изменять ее отдельные компоненты. Иногда это вызывает необходимость изменять и другие компоненты, что существенно усложняет и затрудняет процесс модернизации системы.

Здесь и проявляются преимущества семиуровневой модели. Если между уровнями определены однозначно интерфейсы, то изменение одного из уровней не влечет за собой необходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели ВОС в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, мультиплексоры передачи данных, сетевые платы и т.д.

функции остальных уровней реализуются в виде программных модулей — драйверов.

Модель взаимодействия для ЛВС

Для того чтобы учесть требования физической передающей среды, используемой в ЛВС, была произведена некоторая модернизация семиуровневой модели взаимодействия открытых систем для локальных вычислительных сетей. Необходимость такой модернизации была вызвана тем, что для организации взаимодействия абонентских ЭВМ в ЛВС используются специальные методы доступа к физической передающей среде. Верхние уровни модели ВОС не претерпели никаких изменений, а канальный уровень был разбит на два подуровня. Подуровень LLC (Logical Link Control) обеспечивает управление логическим звеном, т.е. выполняет функции собственно канального уровня. Подуровень MAC (Media Access Control) обеспечивает управление доступом к среде.

Протоколы компьютерной сети

Понятие протокола

Как было показано ранее, при обмене информацией в сети каждый уровень модели ВОС реагирует на свой заголовок. Иными словами, происходит взаимодействие между одноименными уровнями модели в различных абонентских ЭВМ. Такое взаимодействие должно выполняться по определенным правилам.

Протокол — набор правил, определяющий взаимодействие двух одно именных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ.

Протокол — это не программа. Правила и последовательность выполнения действий при обмене информацией, определенные протоколом, должны быть реализованы в программе. Обычно функции протоколов различных уровней реализуются в драйверах для различных вычислительных сетей.

В соответствии с семиуровневой структурой модели можно говорить о необходимости существования протоколов для каждого уровня.

Концепция открытых систем предусматривает разработку стандартов для протоколов различных уровней. Легче всего поддаются стандартизации протоколы трех нижних уровней модели архитектуры открытых систем, так как они определяют действия и процедуры, свойственные для вычислительных сетей любого класса.

Труднее всего стандартизовать протоколы верхних уровней, особенно прикладного, из-за множественности прикладных задач и в ряде случаев их уникальности. Если по типам структур, методам доступа к физической передающей среде, используемым сетевым технологиям и некоторым другим особенностям можно насчитать примерно десяток различных моделей вычислительных сетей, то по их функциональному назначению пределов не существует.

Основные типы протоколов

Проще всего представить особенности сетевых протоколов на примере протоколов канального уровня, которые делятся на две основные группы: байт-ориентированные и бит-ориентированные.

Байт-ориентированный протокол обеспечивает передачу сообщения по информационному каналу в виде последовательности байтов. Кроме информационных байтов

в канал передаются также управляющие и служебные байты. Такой тип протокола удобен для ЭВМ, так как она ориентирована на обработку данных, представленных в виде двоичных байтов. Дня коммуникационной среды байт-ориентированный протокол менее удобен, так как разделение информационного потока в канале на байты требует использования до­полнительных сигналов, что в конечном счете снижает пропускную способность канала связи.

Наиболее известным и распространенным байт-ориентированным протоколом является протокол двоичной синхронной связи BSC (Binary Synchronous Communication), разработанный фирмой IBM, Протокол обеспечивает передачу двух типов кадров: управляющих и информационных. В управляющих кадрах передаются управляющие и служебные символы, в информационных — сообщения (отдельные пакеты, последовательность пакетов). Работа протокола BSC осуществляется в три фазы: установление соединения, поддержание сеанса передачи сообщений, разрыв соединения. Протокол требует на каждый переданный кадр посылки квитанции о результате его приема. Кадры, переданные с ошибкой, передаются по­вторно. Протокол определяет максимальное число повторных передач.

Примечание. Квитанция представляет собой управляющий кадр, в котором содержится подтверждение приема сообщения (положительная квитанция) или отказ от приема из-за ошибки (отрицательная квитанция).

Передача последующего кадра возможна только тогда, когда получена положительная квитанция на прием предыдущего. Это существенно ограничивает быстродействие протокола и предъявляет высокие требования к качеству канала связи.

Бит-ориентированный протокол предусматривает передачу информации в виде потока битов, не разделяемых на байты. Поэтому для разделения кадров используются специальные последовательности — флаги. В начале кадра ставится флаг открывающийся конце — флаг закрывающий.

Бит-ориентированный протокол удобен относительно коммуникационной среды, так как канал связи как раз и ориентирован на передачу последовательности битов. Для ЭВМ он не очень удобен, потому что из поступающей последовательности битов приходится выделять байты для последующей обработки сообщения. Впрочем, учитывая быстродействие ЭВМ, можно считать, что эта операция не окажет существенного влияния на ее производительность. Потенциально бит-ориентированные протоколы являются более скоростными по сравнению с байт-ориентированными, что обусловливает их широкое распространение в современных вычислительных сетях.

Типичным представителем группы бит-ориентированных протоколов являются протокол HDLC (High-level Data Link Control — высший уровень управления каналом связи) и его подмножества. Протокол HDLC управляет информационным каналом с помощью специальных управляющих кадров, в которых передаются команды. Информационные кадры нумеруются. Кроме того, протокол HDLC позволяет без получения положительной квитанции передавать в канал до трех — пяти кадров. Положительная квитанция, полученная, например, на третий кадр, показывает, что два предыдущих приняты без ошибок и необходимо повторить передачу только четвертого и пятого кадров. Такой алгоритм работы и обеспечивает высокое быстродействие протокола.

Из протоколов верхнего уровня модели ВОС следует отметить протокол Х.400 (электронная почта) и FTAM (File Transfer, Access and Management — передача файлов, доступ к файлам и управление файлами).

Локальные вычислительные сети

      Особенности организации ЛВС

      Типовые топологии и методы доступа ЛВС

Особенности организации ЛВС

Функциональные группы устройств в сети

Основное назначение любой компьютерной сети — предоставление информационных и вычислительных ресурсов подключенным к ней пользователям.

С этой точки зрения локальную вычислительную сеть можно рассматривать как совокупность серверов и рабочих станций.

Сервер — компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами.

Серверы могут осуществлять хранение данных, управление базами данных, уда­ленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер — источник ресурсов сети.

Рабочая станция — персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам.

Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MS DOS, Windows и т.д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач.

Особое внимание следует уделить одному из типов серверов — файловому серверу (File Server). В распространенной терминологии для него принято сокращенное название — файл-сервер.

Файл-сервер хранит данные пользователей сети и обеспечивает им доступ к этим данным. Это компьютер с большой емкостью оперативной памяти, жесткими дисками большой емкости и дополнительными накопителями на магнитной ленте (стримерами).

Он работает под управлением специальной операционной системы, которая обеспечивает одновременный доступ пользователей сети к расположенным на нем данным.

Файл-сервер выполняет следующие функции: хранение данных, архивирование данных, синхронизацию изменений данных различными пользователями, передачу данных.

Для многих задач использование одного файл-сервера оказывается недостаточным. Тогда в сеть могут включаться несколько серверов. Возможно также применение в качестве файл-серверов мини-ЭВМ.

Управление взаимодействием устройств в сети

Информационные системы, построенные на базе компьютерных сетей, обеспечивают реше­ние следующих задач: хранение данных, обработка данных, организация доступа пользова­телей к данным, передача данных и результатов обработки данных пользователям.

В системах централизованной обработки эти функции выполняла центральная ЭВМ (Mainframe, Host).

Компьютерные сети реализуют распределенную обработку данных. Обработка данных в этом случае распределена между двумя объектами: клиентом и сервером.

Клиент — задача, рабочая станция или пользователь компьютерной сети.

В процессе обработки данных клиент может сформировать запрос на сервер для выполнения сложных процедур, чтение файла, поиск информации в базе данных и т. д.

Сервер, определенный ранее, выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту.

Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя. В принципе обработка данных может быть выполнена и на сервере. Дня подобных систем приняты термины — системы клиент-сервер или архитектура клиент-сервер.

Архитектура клиент-сервер может использоваться как в одноранговых локальных вычислительных сетях, так и в сети с выделенным сервером.

Одноранговая сеть. В такой сети нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных. Сетевая операционная система распределена по всем рабочим станциям. Каждая станция сети может выполнять функции как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть.

Пользователю сети доступны все устройства, подключенные к другим станциям (диски, принтеры).

Достоинства одноранговых сетей: низкая стоимость и высокая надежность.

Недостатки одноранговых сетей:

      зависимость эффективности работы сети от количества станций;

      сложность управления сетью;

      сложность обеспечения защиты информации;

      трудности обновления и изменения программного обеспечения станций.

Наибольшей популярностью пользуются одноранговые сети на базе сетевых операци­онных систем LANtastic, NetWare Lite.

Сеть с выделенным сервером. В сети с выделенным сервером один из компьютеров выполняет функции хранения данных, предназначенных для использования всеми рабочими станциями, управления взаимодействием между рабочими станциями и ряд сервисных функций.

Такой компьютер обычно называют сервером сети. На нем устанавливается сетевая операционная система, к нему подключаются все разделяемые внешние устройства — жест­кие диски, принтеры и модемы.

Информация о работе Передеча данных между удаленными ЭВМ.Средства коммуникации и мировые компьютерные сети