Моделирование систем

Автор: Пользователь скрыл имя, 30 Января 2013 в 17:38, курсовая работа

Краткое описание

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации.

Файлы: 1 файл

МОДЕЛИРОВАНИЕ СИСТЕМ.doc

— 125.00 Кб (Скачать)

     Познание  реальной действительности является  длительным и сложным процессом.  Определение качества функционирования  большой системы, выбор оптимальной  структуры и алгоритмов поведения,  построение     системы S в соответствии с поставленной перед нею целью – основная проблема при проектировании современных систем, поэтому моделирование можно рассматривать как один из методов, используемых при проектировании и исследовании больших систем.

     Моделирование базируется на некоторой аналогии реального и мысленного эксперимента. Аналогия – основа для объяснения изучаемого явления, однако критерием истины может служить только практика, только опыт. Хотя современные научные гипотезы могут создаться чисто теоретическим путем, но, по сути, базируются на широких практических знаниях. Для объяснения реальных процессов выдвигаются гипотезы, для подтверждения которых ставится эксперимент либо проводят такие теоретические рассуждения, которые логически подтверждают их правильность. В широком смысле под экспериментом можно понимать некоторую процедуру организации и наблюдения каких-то явлений, которые осуществляют в условиях, близких к естественным, либо имитируют их.

     Различают пассивный эксперимент, когда исследователь наблюдает протекающий процесс, а активный, когда наблюдатель вмешивается и организует протекание процесса. В последнее время распространен активный эксперимент, поскольку именно на его основе удается выявить критические ситуации, получить наиболее интересные закономерности, обеспечить возможность повторения эксперимента в различных точках и т.д.

     В основе  любого вида моделирования лежит  некоторая модель, имеющая соответствие, базирующееся на некотором общем качестве, которое характеризует реальный объект. Объективно реальный объект обладает некоторой формальной структурой, поэтому для любой модели характерно наличие некоторой структуры, соответствующей формальной структуре реального объекта.

     В основе  моделирования лежат информационные процессы, поскольку само создание модели М базируется на информации о реальном объекте. В процессе реализации модели получается информация о данном объекте, одновременно в процессе эксперимента с моделью вводится управляющая информация, существенное место занимает обработка полученных результатов, т.е. информация лежит в основе всего процесса моделирования.

 

1.7.     ЦЕЛИ  МОДЕЛИРОВАНИЯ СИСТЕМ.   Одним  из наиболее важных аспектов  построения систем моделирования  является проблема цели. Любую  модель строят в зависимости от цели, которую ставит перед ней исследователь, поэтому одна из основных проблем при моделировании – это проблема целевого назначения. Подобие процесса, протекающего в      модели М, реальному процессу является не целью, а условием правильного функционирования модели, и поэтому в качестве цели должна быть поставлена задача изучения какой-либо стороны функционирования объекта.

     Для упрощения  модели М цели делят на подцели и создают более эффективные виды моделей в зависимости от полученных подцелей моделирования. Можно указать целый ряд примеров целей моделирования в области сложных систем. Например, для АСУ предприятием весьма существенно изучение процессов оперативного управления производством, оперативно-календарного планирования, перспективного планирования и здесь также могут быть успешно использованы методы моделирования.

     Если цель  моделирования ясна, то возникает  следующая проблема, а именно  проблема построения модели М . Построение модели оказывается возможным, если имеется информация или выдвинуты гипотезы относительно структуры, алгоритмов и параметров исследуемого объекта. На основании их изучения осуществляется идентификация объекта. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, Марковские оценки.

     Если модель М построена, то следующей проблемой можно считать проблему работы с ней, т.е. реализацию модели, основные задачи которой – минимизация времени получения конечных результатов и обеспечение их достоверности.

     Для правильно  построенной модели М характерным является то, что она выявляет лишь закономерности, которые нужны исследователю, и не рассматривает свойства системы S, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства. В этом смысле модель выступает как некоторый «заместитель» оригинала, обеспечивающий фиксацию и изучению лишь некоторых свойств реального объекта.

     Таким образом,  характеризуя проблему моделирования  в целом, необходимо учитывать,  что от постановки задачи моделирования  до интерпретации полученных  результатов существует большая  группа сложных научно-технических проблем, к основным из которых можно отнести следующие: идентификацию реальных объектов, выбор вида моделей, построение моделей и их машинную реализацию, взаимодействие исследователя с моделью в ходе машинного эксперимента, проверку правильности полученных в ходе моделирования результатов, выявление основных закономерностей, исследованных в процессе моделирования. В зависимости от объекта моделирования и вида используемой модели эти проблемы могут иметь разную значимость.

     В одних случаях наиболее сложной оказывается идентификация, в других- проблема построения формальной структуры объекта. Возможны трудности и при реализации модели, особенно в случае имитационного моделирования больших систем. При этом следует подчеркнуть роль исследователя в процессе моделирования. Постановка задачи, построение содержательной модели реального объекта во многом представляют собой творческий процесс и базируются на эвристике. И в этом смысле нет формальных путей  выбора оптимального вида модели. Часто отсутствуют формальные методы, позволяющие достаточно точно описать реальный процесс. Поэтому выбор той или иной аналогии, выбор того или иного может привести к ошибочным результатам моделирования.

     Средства  вычислительной техники, которые  в настоящее время широко используются либо для вычислений при аналитическом моделировании, либо для реализации имитационной модели системы, могут лишь помочь с точки зрения эффективности реализации сложной модели, но не позволяют подтвердить правильность той или иной модели. Только на основе обработанных данных, опыта исследователя можно с достоверностью оценить адекватность модели по отношению к реальному процессу.

     Если в  ходе моделирования существенное  место занимает реальный физический  эксперимент, то здесь весьма важна и надежность используемых инструментальных средств, поскольку сбои и отказы программно-технических средств могут приводить к искаженным значениям выходных данных, отображающих протекание процесса. И в этом смысле при проведении физических экспериментов необходимы специальная аппаратура, специально разработанное математическое и информационное обеспечение, которые позволяют реализовать диагностику средств моделирования, чтобы отсеять те ошибки в выходной информации, которые вызваны неисправностями функционирующей  аппаратуры. В ходе машинного эксперимента могут иметь место и ошибочные действия человека-оператора. В этих условиях серьезные задачи стоят в области эргономического обеспечения процесса моделирования.

 

1.8.     МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ.   Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

     Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта,  так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое , имитационное и комбинированное.

     Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами: а)аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б)численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в)качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

     Наиболее полное исследование  процесса функционирования системы  можно провести, если известны  явные зависимости, связывающие  искомые характеристики с начальными условиями, параметрами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

     В отдельных случаях  исследования системы могут удовлетворить  и те выводы, которые можно  сделать при использовании качественного  метода анализа математической  модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

     В настоящее время  распространены методы машинной  реализации исследования характеристик  процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

     При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения  о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.

     Основным преимуществом  имитационного моделирования по  сравнению с аналитическим является  возможность решения более сложных  задач. Имитационные модели позволяют  достаточно просто учитывать  такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

     Когда результаты, полученные  при воспроизведении на имитационной  модели процесса функционирования системы S, являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом, методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, а методом статистических испытаний (Монте-Карло)- численный метод решения аналитической задачи.

     Метод имитационного  моделирования позволяет решать  задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

     При решении задач  машинного синтеза систем на  основе их имитационных моделей  помимо разработки моделирующего  алгоритмов для анализа фиксированной  системы необходимо также разработать алгоритмы поиска оптимального варианта системы. Далее в методологии машинного моделирования будем различать два основных раздела: статику и динамику, - Основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

     Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы  и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Информация о работе Моделирование систем