Автор: Пользователь скрыл имя, 16 Марта 2012 в 07:50, шпаргалка
Пример 1. Депозитный сертификат был куплен за 6 месяцев до срока его погашения по цене 10 000 сум и продан за 4 месяца до срока погашения по цене 14 000 сум. Определите ( по простой процентной ставке без учета налогов ) доходность этой операции в пересчете на год.
Согласно сформулированному вопросу есть два способа распорядиться имеющимися деньгами:
1) купить на 2500 сум облигацию, через 2 года ее погасить и получить 100 000 сум;
2) положить эти деньги в банк на 2 года с ежеквартальным начислением дохода по схеме сложного процента.
В соответствии со сформулированным принципом доход, который мы получим по второй схеме инвестиционных вложений, также должен быть равен 100 000 сум. Так как в банке доход начисляет ежеквартально по схеме сложного процента, то за 2 года будет совершено 8 начислений, чтобы инвестору купившему облигацию было выгодно положить деньги в банк на 2 года, необходимо выполнение соотношения
2500 * (1+b)8 ³ 100 000,
где b - квартальная ставка банковского процента.
Решая это неравенство относительно b, получаем:
(1+b)8 ³ 40;
1+b ³ 1,585833…
b ³ 0,5858, или b ³ 58,58 %.
Ответ: 58,58 %.
Задача 12. По облигациям ежеквартально выплачиваются проценты (a = 10 %) в течение года, после чего производится погашение облигаций по номиналу (N = 1 000 000 сум). Банковская ставка по депозиту b со сроком на 3 месяца составляет 120 % годовых. Определить рыночную стоимость облигаций. Учитывается сложный банковский процент и возможность реинвестирования средств.
Решение. Есть два альтернативных механизма инвестирования: вложения денег на депозит в банк или покупка облигации.
В первом случае по прошествии года (за 4 квартальных выплаты) у инвестора будут денежные средства в размере:
Во втором случае по прошествии года (за 4 квартальных и дисконтную выплаты) у инвестора будут денежные средства в размере:
a * N(1+b/4)3 + a * N(1+b/4)2 + a * N(1+b/4) + a * N + N.
В данном случае учтена возможность реинвестирования доходов по облигации.
Приравнивая два выражения, получаем:
X(1+b/4)4 = a * N(1+b/4)3+a * N(1+b/4)2+a * N(1+b/4) + a * N + N,
или
X * 2,86 = 100000(2,20+1,69+1,3+1)+
откуда следует
X = 1619000 / 2,86 = 566084.
Ответ: 566084 сум.
Задача 13. Предлагается к покупке облигация по цене 80 % от номинала. Выгодна ли покупка этой облигации, если срок ее обращения составляет 1 год? По облигации должны быть осуществлены 4 квартальные процентные выплаты (a = 10 %), после чего в конце года происходит погашение облигации по номинальной стоимости. Банковская ставка по депозиту сроком на 3 месяца составляет 120 % годовых.
Решение. Для ответа на вопрос необходимо определить рыночную стоимость облигации. Рассуждения аналогичные предыдущей задаче приводят к выражению:
то есть рыночная стоимость облигации составляет 56,6 % от номинала. А предложение купить ее за 80 % от номинала, является невыгодным.
Ответ: покупка невыгодна.
Задача 14. Номинальная стоимость акции АО 1 000 сум, ее текущая рыночная цена 6 000 сум. Компания выплачивает квартальный дивиденд 200 сум на акцию. Какова текущая доходность акции АО в годовом исчислении?
Ответ: d = 13,33 %.
Задача 15. Инвестор приобрел за 3 000 сум привилегированную акцию АО номинальной стоимостью 2 000 сум с фиксированным размером дивиденда 10 % годовых. Через пять лет (в течении которых дивиденды выплачивались регулярно) акция была им продана за 25 000 сум. Определите конечную (в пересчете на год) доходность этих операций для инвестора без учета налогообложения.
Ответ: 153,3 %.
Задача 16. Что выгоднее инвестору с точки зрения получения дохода на вложение:
- инвестировать 500 тыс. сум на срочный вклад в банк сроком на год с выплатой 10 % годовых;
- или купить привилегированную акцию того же банка с фиксированным размером дивиденда 11,7 годовах.
Ответ: купить привилегированную акцию (11,7 % против 10 %).
Задача 17. Инвестор приобрел 10 акций (3 акции компании “A”; 2 – компании “Б”; 5 – компании “B”) с примерно равными курсовыми стоимостями. Как измениться (в процентах) совокупная стоимость пакета акций, если курсы акций “A” и “Б” увеличатся на 10 % и на 20 % соответственно, а курс акций “B” упадет на 15 %?
Ответ: снизится на 0,5 %.
Задача 18. Облигация приобретена по курсовой цене 1200 сум, погашается через 5 лет по номиналу 1 000 сум. Определить годовую ставку дополнительного дохода.
Ответ: 4 %.
Задача 19. Краткосрочные государственные облигации номина- лом 1 млн. сум и со сроком обращения 3 месяца приобретены по цене 85 % и проданы через полтора месяца по цене 90 %. Через 15 дней они вновь куплены по цене 95 % и затем погашены. Определить совокупный доход от проведения операций с краткосрочными государственными облигациями.
Ответ: 100 тысяч сум.
Задача 20. Облигация номиналом 1000 сум с 5 % - ной купонной ставкой и погашением через 5 лет приобретена на рынке с дисконтом 10 %. Какова ее текущая доходность?
Ответ: 55,6 %.
Задача 21. Инвестор покупает на 50 тысяч сум 10 – процентные облигации АО по номиналу. К концу дня цены на облигации снизились на 0,5 %. Каковы потери инвестора?
Ответ: 236,3 сум.
Задача 22. Определить дисконтную цену и доходность серти- фиката за срок займа, если номинал ценной бумаги 100 тыс. сум, срок обращения 3 месяца, годовая ставка по аналогичным долговым обязательствам 50 %.
Ответ: 87,5 тыс. сум; 12,5 %.
Задача 23. Сертификат номиналом 10 тысяч сум размещен на 91 день (3 месяца) по цене 10 400 сум под 20 % годовых. Определить доходность сертификата, если до погашения осталось 30 дней.
Ответ: 3,2 %.
Задача 24. Определить доход по 90 – дневному векселю номиналом 10 000 сум, размещенному под 50 % годовых.
Ответ: 1250 сум.
Задача 25. Вексель с обязательством 12 млн. сум учитывается банком за 90 дней до погашения с дисконтом 4,2 млн. сум в пользу банка. Определить величину учетной ставки.
Ответ: 140 %.
Задача 26. Текущая рыночная стоимость акции составляет 6200 сум, дивиденд – 800 сум. Имеет ли смысл купить эту акцию, если требуемый уровень прибыльности оценивается в 14 % годовых.
Ответ: Не имеет смысла (прибыльность 12,9 %).
Задача 27. Акция общества имеет курсовую стоимость 50 000 сум. Еженедельный рост курсовой стоимости акции составляет 5 000 сум. Определите ежемесячный процент, который банк предлагает своим вкладчикам (по простой процентной ставке), если известно, что спустя 7,5 месяцев покупать акции станет невыгодно, так как доходность от вложения средств в банк станет выше доходности, обеспечиваемой ростом курсовой стоимости акций.
Ответ: 10 %.
Задача 28. Акционерное общество выпустило 900 простых акций и 100 привилегированных, а также 150 облигаций. Номинал всех ценных бумаг 1 000 сум. Процент по облигациям составляет 12%, дивиденд по привилегированным акциям 15 %. Разместите держателей ценных бумаг в порядке уменьшения их дохода, если прибыль к распределению между акционерами составила 160 тыс. сум.
Ответ: владелец простой акции (161 сум); акционер, имеющий привилегированную акцию (150 сум); собственные облигации (120 сум).
Задача 29. По решению общего собрания акционеров ликвиди- руется акционерное общество с уставным капиталом 560 млн. сум численностью 120 человек. В ходе ликвидации общество выполнило обязательство в сумме 110 млн. сум. Сколько денег получит каждый из участников АО после его ликвидации?
Ответ: 5 млн. сум.
Задача 30. Сколько будет стоить сертификат, если он выпущен на 3 месяца по номиналу 100 тыс. сум со ставкой 30 % и приобретен за 30 дней до погашения? Необходимо, чтобы доходность составляла 35 %.
Ответ: 96,3 тыс. сум.