Автор: Пользователь скрыл имя, 13 Марта 2012 в 13:44, контрольная работа
Работа содержит тексты и решения 8 задач по дисциплине "Статистика"
Таким образом:
– цены на картофель выросли в отчетном году на 6,3%;
– объем продаж по картофелю увеличился на 3,3%.
– цены на свежую капусту выросли в отчетном периоде на 26,7%;
– свежей капусты было продано в отчетном периоде по сравнению с базисным на 4% меньше.
а) Чтобы определить изменение товарооборота в фактических ценах в абсолютной сумме, необходимо рассчитать агрегатный индекс товарооборота в фактических ценах:
Ipq ==== 1,150 или 115,0%.
Разность между числителем и знаменателем индекса товарооборота в фактических ценах дает прирост (или снижение) товарооборота в абсолютной сумме:
Δpq =–= 98,3-85,5 = 12,8 (тыс. руб.).
Товарооборот в фактических ценах вырос в отчетном периоде по сравнению с базисным периодом на 15% или на 12,8 тыс.руб.
б) Перейдем к расчету агрегатного индекса цен. В качестве веса введем в индекс неизменное количество товаров отчетного периода (по формуле Пааше). Формула агрегатного индекса цен будет выглядеть следующим образом:
Ip ==== 1,148 или 114,8%.
Разность между числителем и знаменателем индекса цен дает прирост (снижение) товарооборота за счет изменения цен:
Δpq(p) =_= 98,3-85,6 =12,7 (тыс. руб.).
Прирост товарооборота в абсолютной сумме в отчетном периоде составил 12,7 тыс. рублей за счет увеличения цен на 14,8%.
в) Чтобы рассчитать агрегатный индекс физического объема товарооборота, который будет характеризовать изменение объема продажи товаров, примем в качестве веса неизменные цены базисного периода и определим стоимость каждого товара:
Iq ==== 1,001 или 100,1%,
Разность между числителем и знаменателем индекса физического объема товарооборота дает прирост (или снижение) товарооборота в неизменных ценах:
Δpq(q) =_=85,6-85,5 = 0,1 (тыс. руб.).
Прирост товарооборота в абсолютной сумме в отчетном периоде за счет увеличения количества проданного товара на 0,1% составил 0,1 тыс. руб.
Связь между изменениями объема товарооборота, количеством продажи товаров и уровнем их цен выражается в системе взаимосвязанных индексов:
= или= Ipq ,
тогда в нашем примере:
1,148*1,001=1,150
Произведение двух индексовдает нам показатель динамики товарооборота в фактических ценах (Ipq), то есть за счет роста цен на 14,8% (в абсолютной сумме – 12,7 тыс.руб.) и увеличения объема продаж на 0,1% (в абсолютной сумме – 100 руб.), товарооборот увеличился в отчетном году на 15% (в абсолютной сумме – 12,8 тыс.руб.).
2. а) Индекс цен переменного состава определим по следующей формуле:
==:
или=:==1,0648 или 106,48%.
Средняя цена единицы продукции по двум заводам возросла на 6,48%.
б) Индекс постоянного состава определим по агрегатному индексу цен:
Ip ==== 1,0652 или 106,52%.
Это означает, что в среднем по двум заводам цена единицы повысилась на 6,52%.
в) Индекс структурных сдвигов определим по формуле:
Iстр =:
или Iстр =:=0,9995 или 99,95%
Средняя цена единицы по двум заводам снизилась на 0,05% за счет изменения удельного веса на отдельном заводе в общем выпуске продукции.
Покажем взаимосвязь трех исчисленных индексов:
= или 1,0652 =Общий вывод: Если бы происшедшие изменения цен продукции не сопровождались перераспределениями в ее выпуске, то средняя себестоимость продукции по двум заводам выросла бы на 6,48%.
Изменение структуры выпуска продукции в общем объеме вызвало снижение цен на 0,05%. Одновременное воздействие двух факторов увеличило среднюю цену продукции по двум заводам на 6,52%.
группировка средний прирост дисперсия
Задача № 7
По заводу имеются следующие данные о выпуске продукции:
Таблица 7.1
Вид продукции | Выпуск продукции в I квартале, тыс. руб. | Индивидуальный индекс физического объема, т/об |
Рельсы трамвайные | 22300 | 1,03 |
Чугун литейный | 15800 | 0,98 |
Железо листовое | 10500 | 1,015 |
q ====1,011
Физический объем продукции увеличился на 1,1%.
2. Сумма изменения затрат равна 49110,5-48600 = 510,5 тыс.руб.
Таким образом за счет увеличения физического объема продукции на 1,1% сумма затрат увеличилась на 510,5 тыс.руб.
Задача № 8
Для изучения тесноты связи между объемом произведенной продукции (факторный признак – Х) и балансовой прибылью (результативный признак – У) по данным задачи № 1 вычислите эмпирическое корреляционное отношение.
Сделайте выводы.
Решение:
Для расчета межгрупповой дисперсии строим расчетную таблицу 8.1.
Таблица 8.1
Расчет среднего квадратического отклонения
Группы банков по объему произведенной продукции | Число банков
n | Сумма прибыли на один банк, млн.руб. У | ()2 | ()2n | |
305-404 | 4 | 15,00 | 22,520 | 507,150 | 2028,602 |
405-503 | 5 | 28,00 | 9,520 | 90,630 | 453,152 |
504-602 | 6 | 36,67 | 0,853 | 0,728 | 4,369 |
603-701 | 5 | 45,60 | 8,080 | 65,286 | 326,432 |
702-800 | 5 | 58,00 | 20,480 | 419,430 | 2097,152 |
Итого: | 25 | 37,52 |
|
| 4909,707 |
Рассчитаем межгрупповую дисперсию по формуле
===196,388
Для расчета общей дисперсии возведем все значения «у» (валовую прибыль) в квадрат.
Таблица 8.2
Валовая прибыль, млн.руб.
У | Валовая прибыль, млн.руб.
У2 | Валовая прибыль, млн.руб.
У | Валовая прибыль, млн.руб.
У2 | Валовая прибыль, млн.руб.
У | Валовая прибыль, млн.руб.
У2 |
45 | 2025 | 59 | 3481 | 41 | 1681 |
11 | 121 | 28 | 784 | 36 | 1296 |
33 | 1089 | 43 | 1849 | 12 | 144 |
27 | 729 | 23 | 529 | 50 | 2500 |
55 | 3025 | 35 | 1225 | 29 | 841 |
64 | 4096 | 54 | 2916 | 38 | 1444 |
14 | 196 | 26 | 676 | 49 | 2401 |
37 | 1369 | 58 | 3364 | Итого | 4036 |
41 | 1681 | 30 | 900 |
|
|
Рассчитаем общую дисперсию по формуле:
= _ = – 37,522 = 206,73
Тогда коэффициент детерминации будет:
η2 = = = 0,950.
Он означает, что вариация суммы выданных банком кредитов на 95% объясняется вариацией размера процентной ставки и на 5% – прочими факторами.
АКАДЕМИЯ ТРУДА И СОЦИАЛЬНЫХ ОТНОШЕНИЙ
УРАЛЬСКИЙ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
Кафедра экономической теории и статистики
По курсу: Статистика
Выполнила: Касимова В.
Специальность:
Экономика труда
Группа ЭЗ-201
Проверила: Щапова Е.Г.
Челябинск
2012