Автор: Пользователь скрыл имя, 18 Декабря 2011 в 14:56, курсовая работа
В настоящее время разрабатывается механизм взаимодействия органов государственной статистики с министерствами и ведомствами для создания методологических основ интеграции и агрегирования данных статистической отчетности, согласованности бухгалтерской и статистической отчетности. В соответствии с требованиями системы национальных счетов (СНС) осуществляются работы по приоритетному применению выборочного метода при проведении статистического наблюдения.
Цель работы: рассмотреть теоретические аспекты изучения макроэкономических показателей на примере валового внутреннего продукта, а также выполнить анализ статистических данных в практической и аналитической части работы.
В связи с заданной целью в работе анализируются система макроэкономических показателей, понятие валового внутреннего продукта и методики его расчета, система показателей динамики.
Введение………………………………………………………………………….3
1. Теоретическая часть…………………………………………………………..4
Статистическое изучение макроэкономических показателей (на примере валового внутреннего продукта) ……………………………………….……..4
1.1. Система макроэкономических показателей………………………………4
1.2. Понятие валового внутреннего продукта и методики его расчета……...5
2. Расчетная часть………………………………………………………………13
3. Аналитическая часть………………………………………………………..30
Заключение……………………………………………..………………………38
Список использованной литературы…………………………………………39
Строим гистограмму
Рис.1.
Гистограмма распределения
Для построения полигона распределения и кумуляты, преобразуем интервальный ряд в дискретный и определим накопление частоты.
Итоговая таблица
Группы домохозяйств по денежным доходам | Количество домохозяйств | Середина интервала | Накопленные частоты |
20-28 | 3 | 24 | 3 |
28-36 | 8 | 32 | 11 |
36-44 | 9 | 40 | 19 |
44-52 | 8 | 48 | 27 |
52 и более | 2 | 56 | 30 |
Итого | 30 |
Строим полигон
Рис.2. Распределение домохозяйств по денежному доходу.
На рисунке видно, что наибольшее количество домохозяйств имеет денежный доход в сумме 40 тыс. руб.
По накопленным частотам строим кумуляту.
Рис.3.
Кумулята распределения домохозяйств
по денежному доходу.
На основе ряда распределения рассчитываем средний денежный доход на одного члена домохозяйства, так как у нас имеется информация о вариантах и частотах.
Средний денежный доход на одного члена домохозяйства
Группы | Кол-во (f) | Середина интервала (x) | x * f | x * x | (x * x)2 | (x * x)2*f |
20-28 | 3 | 24 | 72 | -15.5 | 240.25 | 720.75 |
28-36 | 8 | 32 | 256 | -7.5 | 56.25 | 450 |
36-44 | 9 | 40 | 360 | 0.5 | 0.25 | 2.25 |
44-52 | 8 | 48 | 384 | 8.5 | 72.25 | 578 |
52 и более | 2 | 56 | 112 | 16.5 | 272.25 | 544.5 |
Итого | 30 | - | 1184 | - | - | 2295.5 |
Произведём
расчет моды и медианы.
Мода-
это варианта, которая чаще всего
повторяется в изучаемой
fmo-fmo-1
М0=х0+imo*
(fmo- fmo-1)+( fmo- fmo+1) (9-8)+(9-8)
Медиана-
варианта, которая делит ряд
0,5∑f – Sme-1 30/2 –(3+8)
Ме=х0+ime*
fme
9
Расчет средней величины и показателей вариации:
∑xf 1184
х = ------ = ------ = 39,467 ≈ 39,5 тыс. руб.
∑f 30
Вывод: Средняя арифметическая близка по своему значению к моде и медиане, следовательно можно предположить, что совокупность домохозяйств по признаку денежного дохода однородна, а средний размер денежного дохода на одного члена домохозяйства равный 39,5 тыс. руб. является типичным. Для подтверждения типичности средней рассчитаны показатели вариации. Для этого использованы взвешенные формулы, соответственно расчету ср.арифметической.
Среднее квадратическое отклонение определяем по формуле:
σ = тыс. руб.
Промежуточные вычисления оформлены в таблице 4.
Ср.квадратическое отклонение показывает, что индивидуальное значение денежного дохода по отдельным домохозяйствам отклоняются от средней их стоимости в среднем на 8,7 тыс. руб.
Коэффициент вариации определяется по формуле:
V =
Значение коэффициента вариации не превышает нормативное ограничение (33%), что означает – исследуемая совокупность домохозяйств по признаку денежного дохода однородна, а средний размер денежного дохода на одного члена домохозяйства – 39,5 тыс. руб. является действительной обобщающей количественной характеристикой этой совокупности.
Задание 2.
Связь между признаками – денежный доход и расходы на оплату услуг в среднем на одного члена домохозяйства.
Для выявления наличия связи между денежным доходом и расходами на оплату услуг в среднем на одного члена домохозяйства строим аналитическую таблицу.
Зависимость между денежными доходами и расходами на оплату услуг, тыс. руб.
Группы домохозяйств по денежным доходам | Количество домохозяйств | Денежный доход | Расходы | ||
Всего | На 1 члена домохозяйства | Всего | На 1 члена домохозяйства | ||
20-28 | 3 | 75 | 15 | 19 | 4,3 |
28-36 | 8 | 261 | 32,6 | 43,6 | 5,4 |
36-44 | 9 | 365 | 40,6 | 64,9 | 7,2 |
44-52 | 8 | 385 | 48,1 | 70,5 | 8,8 |
52 и более | 2 | 114 | 57 | 26,4 | 13,2 |
Итого | 30 | 1125 | 193,3 | 218,4 | 38,9 |
Данная аналитическая таблица показывает, что между денежными доходами домохозяйств и расходами ими же на оплату услуг существует прямолинейная зависимость, так как с увеличением денежного дохода на одного члена домохозяйства происходит равное возрастание расходов на оплату услуг.
Направление и характер зависимости между признаками можно увидеть на корреляционной таблице. Для ее построения определим интервал группировки по признаку расходов на оплату услуг и построим ряд распределения.
тыс. руб.
Определяем группы и оформляем их в рабочей таблице.
Рабочая таблица группировки по объему расходов на оплату услуг.
Группы домохозяйств по денежным расходам | Номера домохозяйств | Количество домохозяйств |
3,6-5,7 | 1,2,5,10,12,25,26,28 | 8 |
5,7-7,8 | 3,4,6,7,9,13,15,17,29,30 | 10 |
7,8-9,8 | 8,11,14,16,20,21,23,24,27 | 9 |
9,8-11,9 | 22 | 1 |
11,9-14 | 18,19 | 2 |
Итого | 30 |
На основе рядов распределения по первому и второму признаку строим корреляционную таблицу.
Зависимость между доходами домохозяйств и их расходами на оплату услуг.
Группы домохозяйств по денежным расходам |
x y |
Группы домохозяйств по денежным доходам | fy | y*fy | y2fy | ||||
20-28 | 28-36 | 36-44 | 44-52 | 52 и более | |||||
24 | 32 | 40 | 48 | 56 | |||||
3,6-5,7 | 4,65 | *** | ***** | 8 | 37,2 | 172,98 | |||
5,7-7,8 | 6,75 | *** | ****** | * | 10 | 67,5 | 455,63 | ||
7,8-9,8 | 8,8 | *** | ****** | 9 | 79,2 | 696,96 | |||
9,8-11,9 | 10,85 | * | 1 | 10,85 | 117,72 | ||||
11,9-14 | 12,95 | ** | 2 | 25,9 | 335,41 | ||||
fx | 3 | 8 | 9 | 8 | 2 | 220,65 | 1778,7 | ||
yx | 4,65 | 5,44 | 7,43 | 8,8 | 12,95 |