Понятие средних величин

Автор: Пользователь скрыл имя, 28 Ноября 2011 в 18:41, реферат

Краткое описание

Следующими обобщающими показателями после абсолютных и относительных данных являются средние величины и связанные с ними показатели вариации. Они имеют важное значение в экономическом анализе и в юридической статистике. Только при помощи средних можно охарактеризовать совокупности по количественному варьирующему признаку, по которому их принято сравнивать.
Средняя величина в статистике - это обобщенная характеристика совокупности однородных явлений по какому-либо одному количественно варьирующему признаку. Она обычно обобщает количественную вариацию признака. За любой средней скрывается ряд распределения единиц совокупности по изучаемому признаку, т.е. вариационный ряд.

Оглавление

1. Понятие средних величин ………………………………………………………...3
2. Виды средних величин …………………………………………………………….5
3. Средняя арифметическая ………………………………………………………….6
4. Средняя геометрическая …………………………………………………………..8
5. Мода и медиана …………………………………………………………………....9
6. Показатели вариации признака ………………………………………………….11
7. Анализ вариационных рядов…………………………………………………....13
8. Список используемой литературы………………………………………………16

Файлы: 1 файл

Правовая статистика .doc

— 75.50 Кб (Скачать)

                          МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ САМАРСКОЙ  ОБЛАСТИ

МИНИСТЕРСТВО  ИМУЩЕСТВЕННЫХ ОТНОШЕНИЙ  
САМАРСКОЙ ОБЛАСТИ

Государственное образовательное учреждение

высшего профессионального образования

«Самарская государственная областная академия (Наяновой)» 
 

Факультет: Юридический

Специальность: 030501 «Юриспруденция»

Кафедра: Гражданского права и процесса 
 
 

   

Реферат

По  дисциплине: «Правовая статистика »

Тема: «Понятие средних величин» 
 

                                                                                               Работа выполнена:

                                                                                                         Безденежных О.А

                                 Группа:Ю-10-4

                                                                                           Научный руководитель:

      Сычев А.В

                                                                                          _______________________ 

                                                                                                         Работа защищена

                                                                                           «___»____________2011 г. 

                                                                                            Оценка________________ 
 
 
 
 

                                              

                                                       Самара 2011 
 

                                                  Содержание 

1. Понятие средних  величин ………………………………………………………...3

2. Виды средних  величин …………………………………………………………….5

3. Средняя арифметическая ………………………………………………………….6

4. Средняя геометрическая …………………………………………………………..8

5. Мода и медиана …………………………………………………………………....9

6. Показатели вариации признака ………………………………………………….11

7Анализ вариационных рядов…………………………………………………....13

8. Список используемой  литературы………………………………………………16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                     

 
 
 
 

1. Понятие средних  величин 

Следующими  обобщающими показателями после абсолютных и относительных данных являются средние величины и связанные с ними показатели вариации. Они имеют важное значение в экономическом анализе и в юридической статистике. Только при помощи средних можно охарактеризовать совокупности по количественному варьирующему признаку, по которому их принято сравнивать.

Средняя величина в статистике - это обобщенная характеристика совокупности однородных явлений по какому-либо одному количественно  варьирующему признаку. Она обычно обобщает количественную вариацию признака. За любой средней скрывается ряд распределения единиц совокупности по изучаемому признаку, т.е. вариационный ряд.

Одним из важных условий расчета средних  величин является качественная однородность единиц совокупности в отношении осредняемого признака. Средние величины, которые вычислены для явлений разного типа, представляют собой фикцию. Они могут искажать или стирать различия разнородных совокупностей.

Практически и теоретически в криминологии, социологии права и других юридических дисциплинах допустимы, в основном, групповые средние, т.е. средние, которые вычислены на основе адекватных статистических группировок.

При использовании  средних, как общих, так и групповых, не следует пренебрегать индивидуальными  величинами. Средние показатели, которые основываются на массовом обобщении фактов, отражают их типичные уровни. Но за ними нужно видеть конкретные сведения об изучаемом явлении, конкретные показатели и т.д. Не являясь типичными в количественном отношении, они могут быть такими на качественном уровне анализа. Научное применение средних в статистике должно учитывать диалектическое соотношение общего и индивидуального, массового и единичного.

Средние величины базируются на массовом обобщении  фактов. Только так они способны выявлять те или иные тенденции, которые лежат в основа наблюдаемого процесса. Средние величины отражают самую общую закономерность, которая присуща всей массе изучаемых явлений. Она проявляется в типичной количественной характеристике, так называемой средней величине всех варьирующих показателей. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Виды средних величин 

Средние статистические величины имеют несколько  видов, но все они входят в класс  степенных средних, т.е. средних, построенных  из различных степеней вариантов: средняя  арифметическая, средняя гармоническая, средняя квадратичес-кая, средняя геометрическая и т.д.

При расчете  различных степенных средних  все основные показатели, на основе которых осуществляется расчет, не изменяются.

Разные  виды средних при одних и тех  же исходных показателях имеют в связи с различными значениями степени далеко не одинаковые численные значения.

Чем меньше степень средней, тем меньше значение, соответствующее средней - это является закономерностью. Поэтому каждая средняя  приведенного ряда мажорантна в отношении средних, которые стоят справа от неѐ. Все это называется правилом мажорантности средних.

Выбор обычной средней или взвешенной осуществляется статистическим материалом, а выбор вида степенной - целью  исследования.

В юридической  статистике наиболее широко применяется средняя арифметическая. Она используется при оценке нагрузки оперативных работников, прокуроров, следователей, судей, адвокатов и других сотрудников юридических учреждений, при расчете абсолютного прироста или снижения преступности,

уголовных и гражданских дел, других единиц измерения; обосновании выборочного  наблюдения и т.д.

Среднюю геометрическую величину используют для  вычисления среднегодовых темпов прироста или снижения юридически значимых процессов.

Важную  роль играет среднее квадратическое отклонение при измерении связи между изучаемыми явлениями и их причинами и при обосновании корреляционной зависимости. Средняя гармоническая, средняя кубическая и средняя прогрессивная практически не применяются в правовой статистике. 

3. Средняя арифметическая

Самым распространенным видом средней  величины является средняя арифметическая. Она рассчитывается наиболее просто: складываются величины всех вариантов  и делят эту сумму на общее  число единиц вариантов.

Средняя арифметическая при дискретном вариационном раде исчисляется по формуле средней арифметической взвешенной. Она не имеет принципиальных отличий от простой средней арифметической. В ней лишь суммирование одного и того же значения заменено умножением этого значения на его частоту, таким образом, каждое значение взвешивается по частоте встречаемости. Когда частоты исчисляются сотнями и тысячами, то использование средней взвешенной намного упрощает расчет.

При расчете  средней арифметической совсем необязательно  знать величину каждого индивидуального значения или иметь в своем распоряжении построенный на основе этих вариант вариационный ряд. В официальной отчетности юридических учреждений обычно уже имеются многие суммарные величины. Суммирование происходит последовательно в районах, городах, субъектах Федерации и в центре при сводке и группировке данных, которые получены из документов первичного учета.

Расчет  средней на основе обобщенных в отчете данных осуществим, когда каждое отдельное  значение варианты вообще не фиксируется. Поэтому можно сказать, что между средними и относительными величинами иногда не существует строгих границ. Все они являются обобщающими. Кроме того,

любая средняя величина представляет собой  своеобразное отношение двух абсолютных величин, т.е. она одновременно является определенной относительной величиной. Но с другой стороны, любая относительная величина дает своеобразную усредненную характеристику процесса.

Существуют  некоторые особенности и трудности  для расчета средней арифметической при интервальном ряде статистических показателей, т.е. когда индивидуальные численные варианты сгруппированы в интервалы.

Юридическая статистика использует интервальные ряды чаще, чем дискретные. Таким образом  учитываются сроки наказания, сроки  следствия, сроки рассмотрения уголовных и гражданских дел, возраст правонарушителей и т.д.

С целью  расчета средней арифметической можно использовать некоторые еѐ свойства, которые здесь приводятся без доказательств.

1. Произведение  средней на сумму частот всегда  равно сумме произведений вариант на частоты.

2. Если  от каждой варианты отнять  или прибавить одно и тоже  число, то новая средняя уменьшится  или увеличится на тоже число. 

3. Если  каждую варианту разделить или  умножить на какое-либо число,  то средняя арифметическая уменьшится  или увеличится во столько же раз.

4. Если  все частоты разделить или  умножить на какое-либо число,  то средняя арифметическая от  этого не изменится. 

5. Сумма  отклонений вариант от средней  арифметической всегда равна  нулю.

6. Общая  средняя равна средней из частных средних, взвешенной по численности соответствующих частей совокупности.  
 
 
 
 

4. Средняя геометрическая

Средняя геометрическая используется для вычисления средних темпов роста и прироста (снижения) наблюдаемых процессов. Исследование этих параметров в динамике преступности, выявленных правонарушителей, раскрываемости, судимости, общего  числа заключенных, оправданных, освобожденных от уголовной ответственности, рассмотренных гражданских дел, удовлетворенных и неудовлетворенных исков и других меняющихся во времени юридически значимых процессов и явлений имеет важное значение в науке и практике. Динамика юридически значимых явлений характеризуется многими показателями, среди них средними арифметическими и геометрическими. Средние арифметические показатели используются для расчета среднегодового абсолютного прироста или снижения, выраженного в именованных числах. Они важны, но их недостаточно, особенно в сравнительных целях, для достижения которых большую помощь оказывают темпы роста, прироста и снижения, выраженные в процентах. Расчет этих параметров производится по формуле средней геометрической, но на основе все тех же абсолютных показателей.

Для того, чтобы рассчитать среднегодовые  темпы роста и прироста, необходимы абсолютные показатели первого и  последнего годов, на базе которых рассчитывается относительная величина динамики в процентах и количество лет. В статистических сборниках и официальной отчетности уже имеются подсчитанные общие итоги и даже проценты роста или снижения наблюдаемого процесса. На основе их и числа лет можно легко найти искомые среднегодовые темпы роста и прироста интересующих процессов. 
 
 
 
 

Информация о работе Понятие средних величин