Показатели вариации

Автор: Пользователь скрыл имя, 07 Января 2012 в 13:59, реферат

Краткое описание

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов(условий), которые по разному сочетаются в каждом отдельном случае. Колеблемость отдельных значений характеризуют показатели вариации.
Термин "вариация" произошел от латинского variatio – из

Файлы: 1 файл

статистика.doc

— 993.50 Кб (Скачать)

Тем не менее, в  некоторых случаях, например, как  выше в случае Гамма-распределения, использование метода максимального  правдоподобия требует использования  компьютеров в то время, как метод  моментов может быть быстро и легко  реализован вручную.

Оценки, полученные методом моментов, могут быть использованы как первое приближение для метода максимума правдоподобия. Дальнейшее улучшение оценок может быть получено с использованием метода Ньютона-Рафсона.

В некоторых  случаях, редких при больших объемах  данных и более частых при малом  их количестве, оценки, даваемые методом  моментов могут оказаться вне  допустимой области. Такая проблема никогда не возникает в методе максимального правдоподобия. Также, оценки по методу моментов не обязательно оказываются достаточной статистикой, то есть, они иногда извлекают из данных не всю имеющуюся в них информацию.

2

Дисперсия есть не что иное, как средний квадрат отклонений индивидуальных значений признака от его средней величины.

Формулы дисперсии  взвешенной и простой :

(6.6)

Расчет дисперсии  можно упростить. Для этого используется способ отсчета от условного нуля (способ моментов), если имеют место равные интервалы в вариационном ряду.

Кроме показателей  вариации, выраженных в абсолютных величинах, в статистическом исследовании используются показатели вариации (V), выраженные в относительных величинах, особенно для целей сравнения  колеблемости различных признаков  одной и той же совокупности или для сравнения колеблемости одного и того же признака в нескольких совокупностях.

Данные показатели рассчитываются как отношение размаха  вариации к средней величине признака (коэффициент осцилляции), отношение среднего линейного отклонения к средней величине признака (линейный коэффициент вариации), отношение среднего квадратического отклонения к средней величине признака (коэффициент вариации) и, как правило, выражаются в процентах.

Формулы расчета  относительных показателей вариации:

(6.7)

где VR - коэффициент осцилляции; - линейный коэффициент вариации; - коэффициент вариации.

Из приведенных  формул видно, что чем больше коэффициент V приближен к нулю, тем меньше вариация значений признака.

В статистической практике наиболее часто применяется коэффициент вариации. Он используется не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному).

В статистическом исследовании очень часто бывает необходимо не только изучить вариации признака по всей совокупности, но и  проследить количественные изменения  признака по однородным группам совокупности, а также и между группами. Следовательно, помимо общей средней для всей совокупности необходимо просчитывать и частные средние величины по отдельным группам.

Различают три  вида дисперсий:

  • общая;
  • средняя внутригрупповая;
  • межгрупповая.

Общая дисперсия ( ) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле

(6.8)

где - общая средняя арифметическая всей исследуемой совокупности.

Средняя внутригрупповая дисперсия ( ) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам ( ), затем рассчитывается средняя внутригрупповая дисперсия :

(6.9)

где ni - число единиц в группе

Межгрупповая дисперсия  (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле

(6.10)

где - средняя величина по отдельной группе.

Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:

(6.11)

Данное соотношение  отражает закон, который называют правилом сложения дисперсий. Согласно этому закону (правилу), общая дисперсия, которая возникает под влиянием всех факторов, равна сумме дисперсий, которые появляются как под влиянием признака-фактора, положенного в основу группировки, так и под влиянием других факторов. Благодаря правилу сложения дисперсий можно определить, какая часть общей дисперсии находится под влиянием признака-фактора, положенного в основу группировки.

3

Выборочное статистическое наблюдение является наиболее широко применяемым видом не сплошного наблюдения. При выборочном методе обследованию подвергается сравнительно набольшая часть всей изучаемой совокупности (обычно до 5-10 %, реже до 15-20 %). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью. Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочной совокупностью или выборкой. Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации. 
Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части, организованной по принципу случайного отбора. 
При случайном отборе каждой единице изучаемого объекта (массового явления, генеральной совокупности) обеспечивается определенная (обычно равная) вероятность попасть в количество обследуемых единиц (в выборку) и тем самым исключается субъективность, тенденциозность и односторонность в подборе этих единиц. 
При строгом соблюдении принятых правил отбора выборочное наблюдение репрезентативно в широком смысле слова: при нем обеспечивается близкое соответствие состава охваченной наблюдением выборки и состава генеральной совокупности. Благодаря этому по данных выборочного наблюдения можно определить с желательной степенью приближения интересующие исследователей характеристики изучаемого явления. 
Выборочный метод при проведении ряда исследований является единственно возможным, например, при контроле качества продукции (товара). 
Выборочный метод иногда применяется для проверки данных даже сплошного учета. Минимальная численность обследуемых единиц позволяет провести исследование более тщательно и квалифицированно. Так, при переписи населения практикуются выборочные контрольные обходы для проверки правильности записей сплошного наблюдения. 
Большую актуальность приобретает выборочный метод в условиях перехода к рыночной экономике. Развитие различных форм собственности, изменения в характере экономических отношений, как указывалось в предыдущих лекциях, обусловливают изменения функций учета и статистики, сокращение и упрощение статистической отчетности. 
По сравнению с другими методами, применяющими не сплошное наблюдение, выборочный метод имеет существенное преимущество. При соблюдении правил научной организации выборочного наблюдения появляется возможность количественной оценки ошибки репрезентативности (представительности). 
Более того, способы определения ошибок выборки при различных приемах формирования выборочной совокупности и распространение характеристик выборки на генеральную совокупность составляют основное содержание статистической методологии выборочного метода.
 

4

Основной задачей  при выборочном исследовании является определение ошибок выборки. Принято  различать среднюю и предельную ошибки выборки. Для иллюстрации можно предложить расчет ошибки выборки на примере простого случайного отбора.

Расчет средней ошибки повторной простой случайной выборки производится следующим образом:

cредняя ошибка  для средней

(11.1)

cредняя ошибка  для доли

(11.2)

Расчет средней ошибки бесповторной случайной выборки:

средняя ошибка для средней 

(11.3)

средняя ошибка для доли

(11.4)

Расчет предельной ошибки   повторной случайной выборки:

предельная ошибка для средней

предельная ошибка для доли

(11.5)

где t - коэффициент кратности;

Расчет предельной ошибки бесповторной случайной выборки:

предельная ошибка для средней

(11.6)

предельная ошибка для доли

(11.7)

Следует обратить внимание на то, что под знаком радикала в формулах при бесповторном отборе появляется множитель, где N - численность генеральной совокупности.

Что касается расчета  ошибки выборки в других видах  выборочного отбора (например, типической и серийной), то необходимо отметить следующее.

Для типической выборки величина стандартной ошибки зависит от точности определения групповых средних. Так, в формуле предельной ошибки типической выборки учитывается средняя из групповых дисперсий, т.е.

(11.8)

При серийной выборке величина ошибки выборки зависит не от числа исследуемых единиц, а от числа обследованных серий (s) и от величины межгрупповой дисперсии:

(11.9)

Серийная выборка, как правило, проводится как бесповторная, и формула ошибки выборки в  этом случае имеет вид

(11.10)

где - межсерийная дисперсия; s - число отобранных серий; S - число серий в генеральной совокупности.

Все вышеприведенные  формулы применимы для большой выборки. Кроме большой выборки используются так называемые малые выборки (n < 30), которые могут иметь место в случаях нецелесообразности использования больших выборок.

При расчете  ошибок малой выборки необходимо учесть два момента:

1) формула средней  ошибки имеет вид

(11.11)

2) при определении  доверительных интервалов исследуемого  показателя в генеральной совокупности  или при нахождении вероятности  допуска той или иной ошибки  необходимо использовать таблицы вероятности Стьюдента, где Р = S (t, n), при этом Р определяется в зависимости от объема выборки и t.

В статистических исследованиях с помощью формулы  предельной ошибки можно решать ряд задач.

1. Определять  возможные пределы нахождения  характеристики генеральной совокупности  на основе данных выборки.

6

В соответствии с сущностью корреляционной связи  ее изучение имеет две цели:

1) измерение  параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной (зависимость средних величин результативного признака от значений одного или нескольких факторных признаков);

2) измерение  тесноты связи двух (или большего  числа) признаков между собой.

Вторая задача специфична для статистических связей, а первая разработана для функциональных связей и является общей. Основным методом  решения задачи нахождения параметров уравнения связи является метод  наименьших квадратов (МНК), разработанный К. Ф. Гауссом (1777-1855). Он состоит в минимизации суммы квадратов отклонений фактически измеренных значений зависимой переменной у от ее значений, вычисленных по уравнению связи с факторным признаком (многими признаками) х.

Для измерения  тесноты связи применяется несколько показателей. При парной связи теснота связи измеряется прежде всего корреляционным отношением, которое обозначается греческой буквой п. Квадрат корреляционного отношения - это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группировочного факторного признака на среднюю величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации:  

Информация о работе Показатели вариации